

01 - 05.1

01.06.D

LDM-Ventile mit Johnson Controls-Antrieben

Berechnung des Koeffizienten Kv

Die praktische Berechnung erfolgt unter Berücksichtigung des Regelkreiszustandes und der Arbeitsbedingungen des Mediums nach den unten genannten Formeln. Das Regelventil muß in der Lage sein, den unter den gegebenen Bedingungen maximalen Durchfluß zu regeln. Dabei ist zu prüfen, ob auch der kleinste zu regelnde Durchfluß noch regelbar ist.

Bedingung: Regelverhältnis des Ventils $r > Kvs / Kv_{min}$

Wegen der möglichen Minustoleranz von 10% des Kv₁₀₀-Wertes gegenüber Kvs und der Forderung nach Regelbarkeit im maximalen Durchflußbereich (Durchflußsenkung und erhöhung) empfiehlt der Hersteller, den Kvs-Wert des Regelventils größer als den maximalen Betriebswert Kv einzustellen:

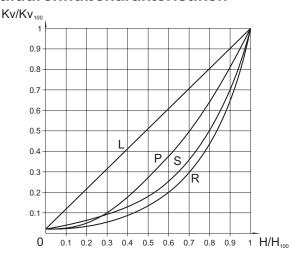
Kvs = 1.1 ÷ 1.3 Kv

Dabei ist zu beachten, wie weit bereits in der Berechnung berücksichtigt wurde, ob der Wert Q_{max} eine "Sicherheitszugabe" enthält, die eine Überdimensionierung der Leistung der Armatur zur Folge haben könnte.

Relationen für die Berechnung Kv

		Druckverlust	Druckverlust
		$p_2 > p_1/2$	$\Delta p \ge p_1/2$
		$\Delta p < p_1/2$	$p_2 \leq p_1/2$
	Flüssigkeit	-Q 100-1	$\frac{\rho_1}{\Delta p}$
Kv =	Gas	$\frac{Q_{_{n}}}{5141}\sqrt{\frac{\rho_{_{n}}.T_{_{1}}}{\Delta p.p_{_{2}}}}$	$\frac{2.Q_{\scriptscriptstyle n}}{5141.p_{\scriptscriptstyle 1}}\sqrt{\rho_{\scriptscriptstyle n}.T_{\scriptscriptstyle 1}}$
rv –	Überhitzter Dampf	$\frac{Q_m}{100}\sqrt{\frac{V_2}{\Delta p}}$	$\frac{Q_{\scriptscriptstyle m}}{100}\sqrt{\frac{2v}{p_{\scriptscriptstyle 1}}}$
	Gesättigter Dampf	$\frac{Q_{m}}{100}\sqrt{\frac{v_{2}.x}{\Delta p}}$	$\frac{Q_{m}}{100}\sqrt{\frac{2v.x}{p_{1}}}$

Überkritische Strömung von Dampf und Gasen


Bei einem überkritischem Druckverhältnis (p $_2$ /p $_1$ < 0.54) erreicht die Strömung im engsten Durchmesser Schallgeschwindigkeit. Das kann Ursache für erhöhte Lautstärke sein. Dann sollte man ein Drosselsystem mit geringer Geräuschentwicklung verwenden (mehrstufige Druckreduzierung, Dämpfungsblende am Ausgang).

Konzipieren der Charakteristik unter Berücksichtigung des Ventilhubs

Zur Auswahl der Ventilcharakteristik sollte überprüft werden, welchen Hub die Armatur in verschiedenen Betriebsregimen erreicht. Diese Kontrolle empfehlen wir mindestens je einmal bei minimaler, nominaler und maximaler angenommener Durchflußmenge. Bei der Auswahl der Charakteristik sollte man sich danach richten, möglichst die ersten und letzten 5-10% Hub zu vermeiden.

Zur Berechnung des Hubs bei verschiedenen Betriebsregimen und Charakteristiken kann unser Berechnungsprogramm VENTILY genutzt werden. Das Programm ist zur kompletten Planung der Armatur von der Berechnung des Koeffizienten Kv bis zur Festlegung des konkreten Armaturtyps einschließlich Antrieb geeignet.

Ventildurchflußcharakteristiken

- lineare Charakteristik

 $Kv/Kv_{100} = 0.0183 + 0.9817 \cdot (H/H_{100})$

- gleichprozentige Charakteristik (4-prozentig)

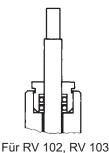
Kv/Kv₁₀₀ = 0.0183 . e⁽⁴⁾ - parabolische Charakteristik

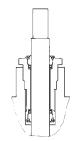
 $Kv/Kv_{100} = 0.0183 + 0.9817 \cdot (H/H_{100})^2$ S - LDMspline®-Charakteristik

 $Kv/Kv_{100} = 0.0183 + 0.269 \cdot (H/H_{100}) - 0.380 \cdot (H/H_{100})^2$ $+ 1.096 \cdot (H/H_{100})^3 - 0.194 \cdot (H/H_{100})^4 - 0.265 \cdot (H/H_{100})^5 + 0.443 \cdot (H/H_{100})^6$

Größen und Einheiten

Bezeichnung	Einheit	Bezeichnung der Größe
Kv	m³.h-¹	Durchflußkoeffizient bei einheitlichen Durchflußbedingungen
Kv ₁₀₀	m³.h-¹	Durchflußkoeffizient bei Nennhub
Kv _{min}	m³.h-1	Durchflußkoeffizient bei Minimaldurchfluß
Kvs	m³.h-1	Nenndurchflußkoeffizient
Q	m³.h-¹	Durchflußvolumen im Betriebszustand (T,,p,)
$\overline{Q_n}$	Nm³.h-¹	Durchflußvolumen im Normalzustand (0°C, 0.101 MPa)
\overline{Q}_{m}	kg.h ⁻¹	Durchflußmenge im Betriebszustand (T,, p,)
p ₁	MPa	Absoluter Druck vor dem Regelventil
p ₂	MPa	Absoluter Druck hinter dem Regelventil
p _s	MPa	Absoluter Druck des gesättigten Dampfes bei gegebener Temperatur (T,)
Δp	MPa	Druckabfall am Regelventil ($\Delta p = p_1 - p_2$)
ρ_1	kg.m⁻³	Dichte des Arbeitsmediums im Betriebszustand (T,, p,)
ρ_{n}	kg.Nm⁻³	Dichte des Gases im Normalzustand (0°C, 0.101 Mpa)
V ₂	m³.kg⁻¹	Meßvolumen des Dampfes bei Temperatur T, und Druck p ₂
V	m³.kg ⁻¹	Meßvolumen des Dampfes bei Temperatur T, und Druck p, /2
T ₁	K	Absolute Temperatur vor dem Ventil (T, =273 + t,)
X	1	Relativer Mengeninhalt des gesättigten Dampfes im nassen Dampf
r	1	Regelverhältnis

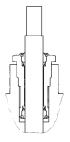

Prinzipien zur Wahl des Kegeltyps


Bei überkritischen Druckabfällen bei einem Eingangsüberdruck von p, ≥ 0.4 Mpa zum Regeln von gesättigtem Dampf keine Kegel mit Ausschnitten verwenden. In diesen Fällen empfehlen wir, Lochkegel zu verwenden. Das gilt auch, wenn Gefahr von Kavitation wegen großem Druckabfall oder Erosion der Armaturgehäusewände wegen hoher Geschwindigkeit des zu regelnden Mediums besteht.

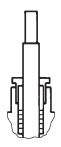
Bei Verwendung eines geformten Kegels (wegen geringem Kvs) für Überdruck p, ≥ 1,6 Mpa und überkritischem Druckabfall sind sowohl Kegel als auch Sitz mit Hartmetall-Aufschweißung zu wählen.

Stopfbuchsen-O-Ring EPDM

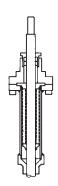
Diese Stopfbuchse ist für nicht aggressive Medien bei Betriebstemperaturen von 0 bis +140°C bestimmt. Sie zeichnet sich durch hohe Zuverlässigkeit und langandauernde Dichtheit aus und behält ihre Dichtfunktion auch bei leicht beschädigter Zugstange. Niedrige Reibungskräfte ermöglichen die Verwendung von Antrieben mit niedriger Stellkraft. Die Lebensdauer der Dichtringe ist abhängig von den Betriebsbedingungen und beträgt im Durchschnitt mehr als 400 000 Zyklen.



Für RV 2xx


Stopfbuchsen - DRSpack® (PTFE)

Das DRSpack® (Direct Radial Sealing pack) ist eine Stopfbuchse mit hoher Dichtfähigkeit bei niedrigem und hohem Betriebsdruck. Der am meisten benutzte Typ ist geeignet für Temperaturen von 0 bis 260°C. Der pH-Wert-Bereich liegt bei 0 bis 14. Die Stopfbuchse ermöglicht die Verwendung von Antrieben mit niedriger Stellkraft. Die Konstruktion ermöglicht den einfachen Austausch der gesamten Buchse. Die durchschnittliche Lebensdauer des DRSpack®liegt bei über 500 000 Zyklen


Stopfbuchsen - Graphit

Dieser Stopfbuchsentyp kann bei Temperaturen bis zu 550°C verwendet werden. Der pH-Wert-Bereich liegt bei 0 bis 14. Die Buchsen können durch Anziehen der Stopfbuchsenschraube oder Zugabe eines weiteren Dichtringes "nachgedichtet" werden. Aufgrund der hohen Dichtkraft ist die Graphit-Stopfbuchse nur für Antriebe mit großer Stellkraft geeignet.

Stopfbuchsen - Faltenbalg

Die Faltenbalg-Stopfbuchse ist für niedrige und hohe Temperaturen von -50 bis 550°C geeignet. Sie garantiert die absolute Dichtheit des Ventils gegenüber seiner äußeren Umgebung. Sie wird standardmäßig mit PTFE-Sicherheitsbuchse verwendet und erfordert keine großen Stellkräfte.

Verwendung der Faltenbalgstopfbuchse

Die Faltenbalgstopfbuchse ist für Anwendungen mit stark aggressiven, giftigen oder sonstigen gefährlichen Medien geeignet, bei denen absolute Dichtheit des Ventils verlangt wird. In solchen Fällen muß auch die Verträglichkeit der für Gehäuse und Innenteile der Armatur verwendeten Materialien mit dem entsprechenden Medium geprüft werden. Bei besonders gefährlichen Flüssigkeiten wird empfohlen, einen Faltenbalg mit Sicherheitsdichtung zu verwenden, die ein Entweichen des Mediums bei Beschädigung des Faltenbalgs verhindert.

Der Faltenbalg ist auch eine hervorragende Lösung bei Mediumtemperaturen unter dem Gefrierpunkt, bei denen das Anfrieren der Zugstange einen vorzeitigen Verschleiß der Dichtung verursacht, oder bei hohen Temperaturen, bei denen er auch als Kühler dient.

Lebensdauer der Faltenbalgstopfbuchse

		<u> </u>												
Faltenbalgmaterial		Temperatur												
Faiteribaiginiateriai	200°C	300°C	400°C	500°C	550°C									
1.4541	100 000	40 000	28 000	7 000	nicht geeignet									
1.4571	90 000	34 000	22 000	13 000	8 000									

Die Tabellenwerte zeigen die garantierten Mindestanzahlen von Zyklen bei vollem Ventilhub mit maximalem Ausziehen und Zusammendruck des Faltenbalgs. Bei Regelvorgängen, wo

sich der Kegel nur um die mittlere Position bewegt und nicht den vollen Hub nutzt, ist die Lebensdauer um ein Vielfaches höher und hängt von den konkreten Bedingungen ab.

Vereinfachte Auslegung eines Durchgangs-Regelventils

Geg.: Medium Wasser, 155°C, stat. Druck an der Anschlußstelle 1000 kPa (10 bar), $\Delta p_{\text{DISP}} = 80$ kPa (0,8 bar), $\Delta p_{\text{LEITUNG}} = 15$ kPa (0,15 bar), $\Delta p_{\text{VERBRAUCHER}} = 25$ kPa (0,25 bar), Nominaldurchfluß $Q_{\text{NOM}} = 8$ m³.h¹, Minimaldurchfluß $Q_{\text{MIN}} = 1,3$ m³.h¹.

$$\begin{array}{l} \Delta p_{\text{DISP}} = \Delta p_{\text{VENTIL}} + \Delta p_{\text{VERBRAUCHER}} + \Delta p_{\text{LEITUNG}} \\ \Delta p_{\text{VENTIL}} = \Delta p_{\text{DISP}} - \Delta p_{\text{VERBRAUCHER}} - \Delta p_{\text{LEITUNG}} = 80 - 25 - 15 = 40 \text{ kPa (0,4 bar)} \end{array}$$

$$Kv = \frac{Q_{_{NOM}}}{\sqrt{\Delta}p_{_{VENTIL}}} = \frac{8}{\sqrt{0,4}} = 12,7 \text{ m}^3.\text{h}^{-1}$$

Sicherheitszugabe zur Herstellertoleranz (unter der Voraussetzung, daß der Durchfluß Q nicht überdimensioniert wurde):

$$Kvs = (1,1 bis 1,3) . Kv = (1,1 bis 1,3) . 12,7 = 14 bis 16,5 m3.h-1$$

Aus der Reihe der Kv-Werte wählen wir den am nächsten liegenden Kvs-Wert aus, d.h. Kvs = 16 m³.h¹. Diesem Wert entspricht die Nennweite DN 32. Wählen wir ein Flanschventil PN 16 aus Formguß mit Sitzdichtung Metall-PTFE, PTFE-Stopfbuchse und gleichprozentiger Durchflußcharakteristik, erhalten wir die Typennummer:

RV 21x XXX 1423 R1 16/220-32

x im Ventilcode (21x) kennzeichnet seine Ausführung (direkt oder revers) und hängt vom verwendeten Antrieb ab, der nach Bedarf des Regelsystems gewählt wird (Typ, Hersteller, Spannung, Regelart, erforderliche Stellkräfte u.ä.)

Druckverlust des Ventils bei voller Öffnung und gegebenem Durchfluß Druckverlust des Ventils bei voller Durchfluß Druckverlust des Ventils bei voller Durchfluß Druckverlust des Ventils bei voller Durchfluß

Autorität des gewählten Ventils

$$a = \frac{\Delta p_{VENTIL H100}}{\Delta p_{VENTIL H0}} = \frac{25}{80} = 0.31$$

wobei a mind. 0,3 sein sollte, was die Kontrolle bestätigt.

Achtung: Die Berechnung der Autorität des Regelventils muß sich auf den Druckunterschied am Ventil im geschlossenen Zustand beziehen, also zum Dispositionsdruck des Zweigs Δp_{DISP} bei Null-Durchfluß. Niemals zum Pumpendruck Δp_{PUMPE} weil $\Delta p_{\text{DISP}} < \Delta p_{\text{PUMPE}}$ durch Druckverluste an der Netzleitung bis zur Anschlußstelle des Regelzweigs. In diesem Fall nehmen wir der Einfachheit halber an: $\Delta p_{\text{DISP}+100} = \Delta p_{\text{DISP}+10} = \Delta p_{\text{DISP}}$.

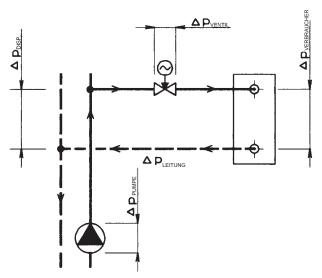
Kontrolle des Regelverhältnisses

Die gleiche Berechnung führen wir für Minimaldurchfluß $Q_{\text{\tiny MIN}}$ =1,3 m³.h¹ durch. Diesem Durchfluß entsprechen die Druckverluste $\Delta p_{\text{\tiny LETCOMIN}}$ = 0,40 kPa, $\Delta p_{\text{\tiny VERBR}}$ = 0,66 kPa. $\Delta p_{\text{\tiny VENTIL OMIN}}$ = 80 - 0,4 - 0,66 = 78,94 = 79 kPa.

$$K_{V_{MIN}} = \frac{Q_{MIN}}{\sqrt{\Delta p_{VENTILLOMIN}}} = \frac{1,3}{\sqrt{0,79}} = 1,46 \text{ m}^3.\text{h}^{-1}$$

Das erforderliche Regelverhältnis

$$r = \frac{Kvs}{Kv_{MIN}} = \frac{16}{1,46} = 11$$


soll kleiner sein als das angegebene Regelverhältnis r = 50. Die Kontrolle entspricht dem.

Wahl der geeigneten Charakteristik

Auf der Grundlage der berechneten Werte Kv_{NOM} und Kv_{MIN} können aus den Durchflußgrafen die entsprechenden Hubwerte für die einzelnen Charakteristiken abgelesen und danach die am besten geeignete Kurve gewählt werden. Hier bei gleichprozentiger Charakteristik $h_{\text{NOM}}=96\%,\ h_{\text{MIN}}=41\%.$ In diesem Fall passt besser LDMspline $^{\circ}(93\%$ und 30% Hub). Dem entspricht die Typennummer:

RV 21x XXX 1423 S1 16/220-32

Typischer Regelkreis unter Verwendung eines Durchgangs-Regelventils

Anmerkung: Detaillierte Hinweise zur Berechnung von LDM-Regelarmaturen finden Sie in der Berechnungsrichtlinie 01-12.0. Alle oben genannten Relationen gelten vereinfacht für Wasser. Eine genaue Berechnung sollten Sie mit Hilfe der Berechnungssoftware VENTILY durchführen, die auch die erforderlichen Kontrollen enthält und auf Anforderung kostenlos zur Verfügung gestellt wird.

Vereinfachte Auslegung eines Dreiwegemischventils

Geg.: Medium Wasser 90°C, stat. Druck an der Anschlußstelle 1000 kPa (10 bar), $\Delta p_{\text{\tiny PUMPE}\,2}$ = 40 kPa (0,4 bar), $\Delta p_{\text{\tiny LEITUNG}}$ = 10 kPa (0,1 bar), $\Delta p_{\text{\tiny VERBRAUCHER}}$ = 20 kPa (0,2 bar), Nominaldurchfluß $Q_{\text{\tiny NOM}}$ = 7 m³ .h¹

$$\begin{split} &\Delta p_{\text{PUMPE}\,_2} = \Delta p_{\text{VENTIL}} + \Delta p_{\text{VERBRAUCHER}} + \Delta p_{\text{LEITUNG}} \\ &\Delta p_{\text{VENTIL}} = \Delta p_{\text{PUMPE}\,_2} - \Delta p_{\text{VERBRAUCHER}} - \Delta p_{\text{LEITUNG}} = 40\text{-}20\text{-}10 = 10 \text{ kPa (0,1bar)} \end{split}$$

$$Kv = \frac{Q_{_{NOM}}}{\sqrt{\Delta p_{_{VENTIL}}}} = \frac{7}{\sqrt{0,1}} = 22,1 \ m^{_3}.h^{_{^{-1}}}$$

Sicherheitszugabe zur Herstellertoleranz (unter der Voraussetzung, daß der Durchfluß Q nicht überdimensioniert wurde):

$$Kvs = (1,1 bis 1,3)$$
. $Kv = (1,1 bis 1,3)$. $22,1 = 24,3 bis 28,7 m3.h-1$

Aus der Reihe der Kv-Werte wählen wir den am nächsten liegenden Kvs-Wert aus, d. h. Kvs = 25 m³.h¹. Diesem Wert entspricht die Nennweite DN 40. Wählen wir ein Flanschventil PN 16 aus Formguß, mit Sitzdichtung Metall-Metall, PTFE-Stopfbuchse und linearer Durchflußcharakteristik, erhalten wir die Typennummer:

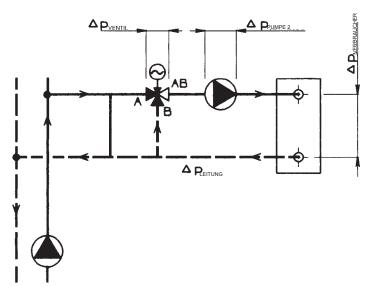
RV 21x XXX 1413 L1 16/140-40

Druckverlust des Ventils bei voller Öffnung

$$\Delta p_{VENTIL H100} = \left(\frac{Q_{NOM}}{Kvs}\right)^2 = \left(\frac{7}{25}\right)^2 = 0.08 \text{ bar (8 kPa)}$$

Der so errechnete reelle Druckverlust der Regelarmatur sollte bei der hydraulischen Netzberechnung berücksichtigt werden.

Achtung: Bei Dreiwegeventilen ist die wichtigste Bedingung für eine reibungslose Funktion die Einhaltung der Minimaldifferenz des Dispositionsdrucks an den Stutzen A und B. Dreiwegeventile können zwar erhebliche Druckdifferenzen an A und B verarbeiten, jedoch um den Preis der Abweichung der Regelcharakteristik und damit Verschlechterung der Regeleigenschaften. Bestehen Zweifel über die Druckdifferenz an beiden Stutzen (z. B. wenn das Dreiwegeventil ohne Druckabkoppelung direkt an das Primärnetz angeschlossen ist, empfehlen wir zur Sicherung der Regelqualität die Verwendung eines Durchgangsventils in Verbindung mit festem Bypass.


Die Autorität des direkten Zweiges des Dreiwegeventils ist in dieser Schaltung unter der Voraussetzung konstanten Durchflusses durch den Verbraucherkreis

$$a = \frac{\Delta p_{_{VENTIL\,H100}}}{\Delta p_{_{VENTIL\,H0}}} = \frac{8}{8} = 1 \ , \label{eq:approx}$$

Das bedeutet, daß die Abhängigkeit des Durchflusses durch den direkten Ventilzweig der idealen Durchflußkurve entspricht. In diesem Fall sind die Kvs beider Zweige identisch, beide Charakteristiken linear, d. h. der Summendurchfluß ist beinahe konstant.

Manchmal ist eine Kombination gleichprozentiger Charakteristik im Weg A mit linearer Charakteristik im Weg B günstig, wenn eine Belastung der Eingänge A gegenüber B durch Differenzdruck nicht vermeidbar ist oder die Parameter auf der Primärseite zu hoch sind.

Typischer Regelkreis unter Verwendung eines Dreiwegemischventils

Anmerkung: Detaillierte Hinweise zur Berechnung von LDM-Regelarmaturen finden Sie in der Berechnungsrichtlinie 01-12.0. Alle oben genannten Relationen gelten vereinfacht für Wasser. Eine genaue Berechnung sollten Sie mit Hilfe der Berechnungssoftware VENTILY durchführen, die auch die erforderlichen Kontrollen enthält und auf Anforderung kostenlos zur Verfügung gestellt wird.

RV 102 C RV 103 C

Regelventile DN 15 - 50, PN 16 mit Johnson Controls-Antrieben

Beschreibung

Die Regelventile der Reihe RV 102 sind Zwei- oder Dreiwegearmaturen mit Gewindeanschluß. Das Gehäuse besteht aus Bronze.

Die Regelventile der Reihe RV 103 sind die gleichen Armaturen in Flanschausführung. Das Gehäuse besteht aus Grauguß.

Die Ventile werden in folgender Ausführung hergestellt:

- Dreiwege-Regelventil
- Durchgangs-Regelventil, revers
- Durchgangs-Eck-Regelvenitl

Ventile RV 102 C und RV 103 C werden von elektrischen oder elektrohydraulischen Antrieben der Firma Johnson Controls gesteuert.

Anwendung

Diese Ventile sind zur Anwendung in der Heiz- und Klimatechnik für Temperaturen bis 150°C bestimmt.

Der höchstzulässige Arbeitsüberdruck in Abhängigkeit von gewähltem Material und Medientemperatur ist auf Seite 38 dieses Katalogs angegeben.

Arbeitsmedien

Ventile der Reihe RV 102 und RV 103 dienen zur Regelung von Durchflußmenge und Druck von Flüssigkeiten, Gasen und Dampf ohne abrasive Beimischungen wie Wasser, Niederdruckwasserdampf (gilt nur für RV 102), Luft und andere Medien, die mit dem Material der Armatur kompatibel sind. Säure bzw. Alkalität des Mediums sollte den pH-Wert-Bereich von 4.5 bis 9.5 nicht überschreiten.

Zur Sicherung einer qualitativ hohen und zuverlässigen Regelung empfiehlt der Hersteller, vor das Ventil einen Filter für mechanische Unreinheiten zu setzen.

Einbaupositionen

Das Ventil ist immer so in die Rohrleitung einzubauen, daß die Fließrichtung des Mediums mit den Pfeilen auf dem Gehäuse übereinstimmt (Eingänge A, B und Ausgang AB).

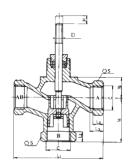
Bei Verteilern ist die Fließrichtung entgegengesetzt (Eingang AB und Ausgänge A, B)

Die Einbauposition ist beliebig mit Ausnahme der Fälle, wo der Antrieb unter dem Ventil angebracht wird.

Technische Parameter

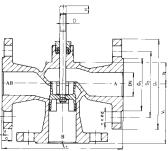
Baureihe	RV 102	RV 103							
Ausführung	Dreiwege-	Regelventil							
	Durchgangs-Re	gelventil, revers							
Nennweitenbereich	DN 15	bis 50							
Nenndruck	PN 16								
Material Gehäuse	Bronze 42 3135	Grauguß EN-JL 1040							
Material Kegel	Messing	42 3234							
Arbeitstemperaturbereich	-5 bis	150°C							
Baulängen	Reihe M4 nach DIN 3202 (4/1982)	Reihe 1 nach ČSN-EN 558-1 (3/1997)							
Anschlußart	Stutzen mit Innengewinde	Flansch Typ B1 (grobe Dichtleiste)							
		nach ČSN-EN 1092-1 (4/2002)							
Kegeltyp	zylindr. mit /	Ausschnitten							
Durchflußcharakteristik	Linear, gle	eichprozentig							
Kvs-Werte	0.6 bis	s 40 m³/h							
Leckrate	Klasse III. nach ČSN-EN 1349 (5	/2001) (<0.1 % Kvs) im Zweig A-AB							
Regelverhältnis r	50 : 1								
Stopfbuchsendichtung	O - Ring EPDM								

Durchflußkoeffizienten Kvs und Differenzdruck


Der Wert $\Delta p_{\text{\tiny max}}$ ist der maximale Druckabfall am Ventil, bei dem ein zuverlässiges Öffnen und Schließen gewährleistet ist. Zur Sicherung der Lebensdauer von Sitz und

Kegel wird empfohlen, daß der Druckabfall an den Ventilen RV 102 0.6 MPa und an den Ventilen RV 103 0.4 MPa auf Dauer nicht überschreitet.

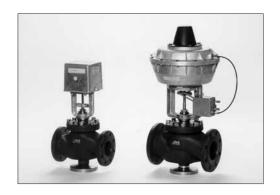
Weitere	Informatio	nen zur		Steuerur	ng (Antrie	b)	VA-77xx-100x	VA-7810-xxx-11	
Steueru	ng siehe E	Blätter Ant	riebe	Bezeichi	nung in d	er Typnr.	ECM	ECN	
				Stellkraft	:		500 N ± 20%	1000 N ± 20%	
			K	vs [m³/h]			Δ p_{max}	$\Delta p_{\scriptscriptstyle \sf max}$	
DN	Н	1	2	3	4	5	MPa	MPa	
15		4.01)	2.5	1.6	1.0	0.6	1.60	1.60	
20	10	10	6.3 ¹⁾	4.0	2.5			1.07	1.60
25		10.0 1)	6.3	4.0			0.69	1.18	
32		16.0 1)	10.0	6.3			0.42	0.73	
40	16	25.0 1)	16.0	10.0			0.27	0.47	
50		40.0 1)	25.0	16.0			0.15	0.28	


Ventile RV 102 - Abmessungen und Gewicht

DN	С	L	L ₂	L ₃	V ₁	V ₂	S	Н	D	m
		mm	mm	mm	mm	mm	mm	mm	mm	kg
15	G 1/2	85	9	12	43	25	27			0.55
20	G 3/4	95	11	14	48	25	32	10	ш	0.65
25	G 1	105	12	16	53	25	41		S	0.80
32	G 1 1/4	120	14	18	66	35	50		1/4"	1.40
40	G 1 1/2	130	16	20	70	35	58	16	7	2.00
50	G 2	150	18	22	80	42	70			2.95

Ventile RV 103 - Abmessungen und Gewicht

DN	D ₁	D ₂	D ₃	n x d	а	f	L	V ₁	V ₂	Н	D	m
	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg
15	95	65	45		16		130	65	25			3.2
20	105	75	58	4x14		2	150	75	25	10	ш	4.3
25	115	85	68		18		160	80	25		S	5.5
32	140	100	78		10	3	180	90	35		1/4"	7.7
40	150	110	88	4x18			200	100	35	16	7	8.5
50	165	125	102		20		230	115	42			11.9



Zusammensetzung der kompletten Ventiltypenbezeichnung

			XX	XXX	XXX	ХХ	ХХ	- XX	/ XXX	- XX
1. Ventil	Regelventil		RV							\sqcap
2. Typenbezeichnung	Ventile aus Bronze			1 0 2						\Box
	Ventile aus Grauguß			1 0 3						П
Steuerungsart	Elektroantriebe				E					
•	Elektroantriebe VA-77xx-100x				ECM					П
	Elektroantriebe VA 72xx 100x				ECN					
										Н—
										<u> </u>
4. Ausführung	Durchgangsventil, direkt, mit Gewinde					1				
	Durchgangs-Eck-Ventil, mit Gewinde	gilt für RV 102				2				
	Dreiwegemischventil (Verteiler) mit Gew.					3				
	Durchgangsventil, direkt, Flansch					4				
	Durchgangs-Eck-Ventil, Flansch	gilt für RV 103				5				
	Dreiwegemischventil (Verteiler), Flansch					6				
5. Material Körper	Grauguß					3				
	Bronze					5				
Durchflußcharakteristik	Linear						1			
1) Nur für Kvs-Grundwert	Gleichprozentig 1)						2			
7. Nenndurchflußkoeff. Kvs	Spalternummer nach Kvs-Tabelle						Х			
8. Nenndruck PN	PN 16							16		
9. Arbeitstemperatur °C									150	
10. Nennweite	DN									XX

Bestellbeispiel: Dreiwegeregelventil DN 25, PN 16 mit Elektroantrieb VA 7740-1003, aus Bronze, mit Gewindeanschluß G 1, lineare Durchflußcharakteristik, Kvs = 10 m³/hwird bezeichnet: **RV 102 ECM 3511 16/140-25**.

200 line

RV 2x0 C

Regelventile DN 50 - 150, PN 16 und 40 mit Johnson Controls-Antrieben

Beschreibung

Die Regelventile RV 210, RV 220 und RV 230 (weiter nur RV 2x0) sind Einsitzarmaturen zum Regeln und Verschließen von Mediendurchflüssen. Wegen der Kräfte der verwendeten Antriebe sind sie zur Regelung bei niedriegem und mittlerem Druckabfall geeignet. Durchflußcharakteristiken, Kvs-Koeffizienten und Leckrate entsprechen den internationalen Standards.

Ventile des Typs RV 2x0 C sind in ihrer Ausführung zum Anschluß an elektromechanische Antriebe der Firma Johnson Controls angepaßt.

Anwendung

Diese Ventile sind zur Anwendung in der Heiz- und Klimatechnik, in Energiewirtschaft und chemischer Industrie bestimmt. Je nach Betriebsbedingungen können die Antriebe aus Formguß, Gußstahl oder austenitischem Edelstahl gefertigt sein.

Die gewähl-ten Materialien entsprechen der ČSN-EN 1503-1 (1/2002) (Stahl) bzw. ČSN-EN 1503-3 (1/2002) (Guß). Der höchstzulässige Arbeitsüberdruck in Abhängigkeit von Material und Mediumtemperatur ist auf Seite 38 angegeben.

Arbeitsmedien

Ventile der Reihe RV 2x0 sind zum Regeln und Schließen von Durchflußmenge und Druck von Flüssigkeiten, Gasen und Dampf wie Wasser, Dampf, Luft und andere Medien, die mit dem Material der Armatur kompatibel sind, bestimmt. Die Verwendung von Ventilen aus Formguß (RV 210) bei Dampf ist durch folgende Parameter begrenzt: der Dampf muß überhitzt sein (Trockenheit am Eingang x_{12} 0,98) und der Eingangs. überdruck p_{12} 0,4 MPa bei überkritischem Druckabfall bzw. p_{12} 1,6 MPa bzw. bei unterkritischem Druckabfall. Werden diese Parameter überschritten, sind Ventile aus Gußstahl (RV 220) zu verwenden. Zur Sicherung einer qualitativ hohen und zuverlässigen Regelung empfiehlt der Hersteller, vor das Ventil einen Filter zu setzen oder anderweitig sicherzustellen, daß das zu regelnde Medium keine abrasiven Beimischungen oder andere mechanische Unreinheiten enthält.

Einbaupositionen

Das Ventil ist immer so einzubauen, daß die Fließrichtung des Mediums mit den Pfeilen auf dem Gehäuse übereinstimmt. Die Einbauposition ist beliebig mit Ausnahme der Fälle, wo der Antrieb unter dem Ventil angebracht ist. Bei Mediumtemperaturen über 150°C ist der Antrieb vor übermäßiger Hitzeeinwirkung von der Rohrleitung her zu schützen, z. B. durch geeignete Isolierung von Leitung und Ventil und Schwenken des Antriebs aus der senkrechten Achse.

Technische Parameter

Baureihe		RV 210	RV 220	RV 230						
Ausführung		Γ	Durchgangsregelventil, einsitzig	I						
Nennweitenberei	ch		DN 50 bis 150							
Nenndruck			PN 16, PN 40							
Material Gehäus	e	Formguß	Rostfreier Gußstahl							
		EN-JS 1025	1.0619 (GP240GH)	1.4581						
		(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)						
Material Sitz:	DN 15 - 50	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4						
DIN W.Nr./ČSN	DN 65 - 150	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4						
Material Kegel:	DN 15 - 65	1.4021 / 17 027.6	1.4021 / 17 027.6	1.4571 / 17 347.4						
DIN W.Nr./ČSN	DN 80 - 150	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4						
Arbeitstemperatu	ırbereich	-20 bis 300°C	-20 bis 400°C							
Baulängen		Rei	ihe 1 nach ČSN-EN 558-1 (3/19	997)						
Anschlußflansch	е		nach ČSN-EN 1092-1 (4/2002)							
Flanschdichtfläch	nen	Typ B1 (grobe Dichtleiste)	oder Typ F (Rücksprung) nach	ČSN-EN 1092-1 (4/2002)						
Kegeltyp		Zylindr. m	nit Ausschnitten, Parabolkegel, I	_ochkegel						
Durchflußcharak	teristik	linear, gleichpr	rozentig, LDMspline®, paraboliso	ch, absperrend						
Kvs-Werte			16 bis 360 m³/h							
Leckrate		Klasse III. nach ČSN-EN 1349 (5/2001) (<0.1% Kvs) für Regelventil mit Sitzdichtung Metall-Metall								
		Klasse IV. nach ČSN-EN 1349 (5/2001) (<0.01% Kvs) für Regelventil mit Sitzdichtung Metall-PTFE								
Regelverhältnis r	•		50 : 1							
Stopfbuchsendic	htung	O - Ring EPDM t _{max} =140°C, DRSpack® (PTFE) t _{max} =260°C, Exp. Graphit, Faltenbalg t _{max} =500°C								

Anmerkung: Für niedrige Arbeitstemperaturen (-200 bis +250°C) ist das Ventil RV/UV 230 aus 1.4308 (austenitischer rostfreier Gußstahl) lieferbar.

Durchflußkoeff. Kvs und Differenzdruck für Ventile mit elektromech. Antrieben

Der Wert $\Delta p_{\text{\tiny max}}$ ist der maximale Druckabfall am Ventil, bei dem ein zuverlässiges Öffnen und Schließen gewährleistet ist. Zur Sicherung der Lebensdauer von Sitz und Kegel wird empfohlen, daß der Druckabfall auf Dauer

1.6 MPa nicht überschreitet. Anderenfalls sollte ein Lochkegel verwendet oder die Auflageflächen von Sitz und Kegel mit einer Hartmetallschicht versehen werden.

Weitere Inform Steuerung siel	he Katalog-	Steuerung (A	intrieb)		RA 3xxx-722x	FA 22xx-751x FA 25xx-751x	RA 3xxx-732x	FA 33xx-741x
blätter Antrieb	е	Bezeichnung	in der Typnum	mer	ECI	ECK	ECI	ECL
		Stellkraft			1800 N	2300 N	3000 N	6000 N
			Kvs [m³/h]		Δp_{max}	Δp_{max}	Δp_{max}	Δp_{max}
DN	Н	1	2	3	Metall PTFE	Metall PTFE	Metall PTFE	Metall PTFE
50	25	40.0	25.0	16.0	0.33 0.52	0.54 0.74		
65	23	63.0	40.0	25.0	0.16 0.32	0.29 0.45		
80		100.0	63.0	40.0			0.19 0.32	0.73 0.86
100	40	160.0	100.0	63.0			0.10 0.21	0.45 0.56
125	42	250.0	160.0	100.0			0.05 0.13	0.27 0.36
150	150		250.0	160.0			0.02 0.09	0.18 0.25

Durchflußkoeffizienten Kvs und Differenzdruck für Ventile mit Pneumatikantrieben

	W. 1. () D																	
Weitere I	nforma-	Pneuma	tikantrieb	е						PA-	2000							
tionen zu		Antriebs	bezeichn	ung	PA-2x	xx-3312	PA-2x	x-3327	PA-2x	xx-3712	PA-2x	xx-3727	PA-2xxx-3612		PA-2xxx-3627			
Steuerun Katalogb		Antriebs	funktion		dir	ekt	indi	rekt	dir	ekt	ind	irekt	dir	ekt	indi	irekt		
Antriebe	iallei	Federbereich [bar]		[bar]	0,2 - 0,5		0,7	- 1,0	0,2 - 0,5		0,7 - 1,0		0,2	- 0,5	0,7	- 1,0		
Antilobo		Federeinstellung [bar]			0	,2	0	,7	0,2		0	,7	0	,2	0	,7		
		Versorgungsdruck [bar]			1	,6	1	,2	1	,6	1	,2	1	,6	1	,2		
		Bez. in c	der Typnr.			PCB												
		Stellkraf	t		3300 N		210	2100 N		6600 N		00 N	6600 N		420	00 N		
		Kvs [m³/h]			Δ	P _{max}	Δ	P _{max}	Δ	P _{max}	Δ	P _{max}	Δ	P _{max}	Δ	p _{max}		
DN	Н	1	2	3	Metall	PTFE	Metall	PTFE	Metall	PTFE	Metall	PTFE	Metall	PTFE	Metall	PTFE		
50	- 25	40.0	25.0	16.0	0.97	1.16	0.46	0.65	2.37	2.57	1.35	1.54						
65	- 25	63.0	40.0	25.0	0.55	0.71	0.24	0.39	1.41	1.56	0.79	0.94						
80		100.0	63.0	40.0									0.84	0.97	0.41	0.54		
100	42	160.0	100.0	63.0									0.52	0.63	0.24	0.35		
125	42	250.0	160.0	100.0									0.32	0.41	0.14	0.22		
150		360.0	250.0	160.0									0.21	0.28	0.08	0.16		

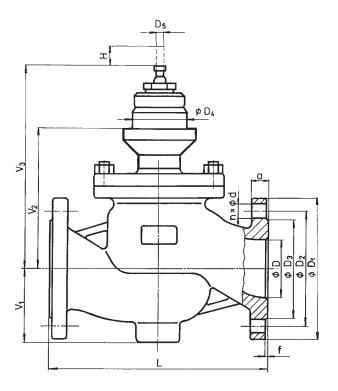
Lochkegel sind nur bei wie folgt bezeichneten Kvs-Werten und mit folgenden Einschränkungen lieferbar:

Bei Ventilen PN 16 darf Δ p 1.6 MPa nicht überschreiten.

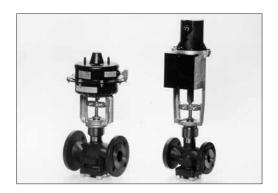
Metall - Sitzdichtung Metall - Metall

PTFE - Sitzdichtung Metall - PTFE (nicht für Parabolkegel verwendbar)

Die in der Tabelle angegebenen maximalen Differenzdruckwerte gelten für PTFE-Stopfbuchse oder O-Ring. Bei Faltenbalgausführung ist der Δp_{max} -Wert mit dem Hersteller abzusprechen. Das gilt auch bei Graphit-Stopfbuchse, wenn sich der geforderte Δp den in der Tabelle angegebenen Maximalwerten nähert.


Die Werte $\Delta p_{\mbox{\tiny max}}$ gelten für den ungünstigsten Zustand der Druck-verhältnisse am Ventil PN 40, in konkreten Fällen kann jedoch der tatsächliche Wert $\Delta p_{\mbox{\tiny max}}$ höher sein als die in der Tabelle angegebenen Werte.

je nach Kvs-Wert in Spalte 2 sind Lochkegel nur mit linearer oder parabolischer Charakteristik lieferbar


Ventile RV 2x0 - Abmessungen und Gewicht

	PN 16								PN	40			PN 16, PN 40												
DN	D ₁	D ₂	D ₃	d	n	а	D₁	D ₂	D ₃	d	n	а	D	f	$D_{\!\scriptscriptstyle 4}$	D ₅	L	V ₁	V_{2}	$^{*}V_{_{2}}$	V_3	$^{*}V_{_{3}}$	m₁	m ₂	#m _v
	mm	mm	mm	mm		mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
50	165	125	102		4	20	165	125	102		4	20	50			40	230	85	150	338	216	404	14	21	4
65	185	145	122	18	4 ¹⁾	20	185	145	122	18		22	65			12	290	93	150	338	216	404	18	27	4
80	200	160	133	10		20	200	160	133			24	80	2	54		310	105	164	481	230	547	26	40	4.5
100	220	180	158		8	20	235	190	158	22	8	24	100	3	34	13.8	350	118	164	481	230	547	38	49	4.5
125	250	210	188	22	0	22	270	220	184	26		26	125			13.0	400	135	183	500	249	566	58	82	5
150	285	240	212	22		22	300	250	212	76		28	150	150			480	150	200	517	266	583	78	100	5

- unter Berücksichtigung früher gültiger Normen wurde die in der ČSN-EN 1092-1 angebotene Möglichkeit der Wahl der Anzahl der Verbindungsschrauben genutzt gilt für Faltenbalgausführung m_v Masse, die bei Faltenbalgausführung zum Ventilgewicht
- hinzuzurechnen ist
- m₁ Ventile RV 210 m₂ Ventile RV 220 und RV 230

200 line

RV / HU 2x1 C

Regelventile und Regelventile mit Notstellfunktion DN 15 - 40, PN 16 a 40 mit Johnson Controls-Antrieben

Beschreibung

Die Regelventile RV 211, RV 221 und RV 231 (weiter nur RV 2x1) sind Einsitzarmaturen zum Regeln und Verschließen von Mediendurchflüssen. Wegen der Kräfte der verwendeten Antriebe sind sie zur Regelung bei niedrigem Druckabfall geeignet. Durchflußcharakteristiken, Kvs-Koeffizienten und Leckrate entsprechen den internationalen Standards.

Regelventile mit Notstellfunktion der Reihe HU 2x1 sind Ventile derselben Baureihe mit erhöhter Dichtigkeit am Sitz. Sie sind zum Anschluß an elektrohydraulische Antriebe mit Notstellfunktion (bei Stromausfall schließt das Ventil) angepaßt.

Ventile des Typs RV 2x1 C sind mit ihrer Umkehrfunktion zum Anschluß an Johnson Controls angepaßt.

Anwendung

Diese Ventile sind zur Anwendung in der Heiz- und Klimatechnik, in Energiewirtschaft und chemischer Industrie bestimmt. Je nach Betriebsbedingungen können die Ventile aus Formguß, Gußstahl oder austenitischem Edelstahl gefertigt sein. Die gewählten Materialien entsprechen der Empfehlung ČSN-EN 1503-1 (1/2002) (Stahl) bzw. ČSN-EN 1503-3 (1/2002) (Guß). Der höchstzulässige Arbeitsüberdruck in Abhängigkeit von gewähltem Material und Mediumtemperatur ist in der Tabelle auf Seite 38 angegeben.

Arbeitsmedien

Ventile der Reihe RV / HU 2x1 sind zum Regeln (RV 2x1) bzw. Regeln und Schließen (HU 2x1) von Durchflußmenge und Druck von Flüssigkeiten, Gasen und Dampf ohne abrasive Beimischungen wie Wasser, Dampf, Luft und andere Medien, die mit dem Material der Armatur kompatibel sind, bestimmt. Die Verwendung von Ventilen aus Formguß (RV 211) bei Dampf ist durch folgende Parameter begrenzt: Der Dampf muß überhitzt sein (Trockenheit am Eingang $x_1 \ge 0,98$) und der Eingangsüberdruck $p_1 \le 0,4$ MP bei überkritischem Druckabfall bzw. $p_1 \le 1,6$ MPa bei unterkritischem Druckabfall. Werden diese Parameter überschritten, sind Ventile aus Gußstahl (RV 221) zu verwenden. Zur Sicherung einer qualitativ hohen und zuverlässigen Regelung empfiehlt der Hersteller, vor das Ventil einen Filter zu setzen oder anderweitig sicherzustellen, daß das Medium keine abrasiven Beimischungen enthält.

Einbaupositionen

Das Ventil ist immer so in die Rohrleitung einzubauen, daß die Fließrichtung des Mediums mit den Pfeilen auf dem Gehäuse übereinstimmt.

Die Einbauposition ist beliebig mit Ausnahme der Fälle, wo der Antrieb unter dem Ventil angebracht wird. Bei Mediumtemperaturen über 150°C ist der Antrieb vor übermäßiger Hitzeeinwirkung in der Rohrleitung zu schützen, z. B. durch geeignete Isolierung von Leitung und Ventil und Schwenken des Antriebs aus der senkrechten Achse.

Technische Parameter

	5,4,1,1,0,4	5,,,,,,,	
Baureihe	RV / HU 211	RV / HU 221	RV / HU 231
Ausführung	Durch	igangs-Regelventil, einsitzig, re	vers
Nennweitenbereich		DN 15 bis 40	
Nenndruck		PN 16, PN 40	
Material Gehäuse	Formguß	Gußstahl	Rostfreier Gußstahl
	EN-JS 1025	1.0619 (GP240GH)	1.4581
	(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)
Material Sitz	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4
DIN W.Nr./ČSN	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4
Material Kegel	1.4021 / 17 027.6	1.4021 / 17 027.6	1.4571 / 17 347.4
DIN W.Nr./ČSN	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4
Arbeitstemperaturbereich	-20 bis 300°C	-20 bis 300°C	-20 bis 300°C
Baulängen	Rei	he 1 nach ČSN-EN 558-1 (3/19	997)
Anschlußflansche		nach ČSN-EN 1092-1 (4/2002)	
Flanschdichtflächen	Typ B1 (grobe Dichtleiste)	oder Typ F (Rücksprung) nach	ČSN-EN 1092-1 (4/2002)
Kegeltyp	zylindr. m	it Ausschnitten, Parabolkegel, I	-ochkegel
Durchflußcharakteristik	Linear, g	gleichprozentig, LDMspline®,par	abolisch
Kvs-Werte		0.4 bis 25 m³/h	
Leckrate	Klasse III. nach ČSN-EN 1349 (5/2001) (<0.1% Kvs) für Regelven	til mit Sitzdichtung Metall - Metall
	Klasse IV. nach ČSN-EN 1349 (5	5/2001) (<0.01% Kvs) für Regelver	ntil mit Sitzdichtung Metall - PTFE
Regelverhältnis r		50 : 1	
Stopfbuchsendichtung	O - Ring EPDM t _{max} =140°	°C, DRSpack®(PTFE) t _{max} =260°C	C, Faltenbalg t _{max} =300°C

Anmerkung: Für niedrige Arbeitstemperaturen (-200 bis +250°C) ist das Ventil RV/HU 231 aus 1.4308 (austenitischer rostfreier Gußstahl) lieferbar.

Durchflußkoeffizienten Kvs und Differenzdruck für Ventile mit elektromechanischen und elektrohydraulischen Antrieben

Der Wert Δp_{max} ist der maximale Druckabfall am Ventil, bei dem ein zuverlässiges Öffnen und Schließen gewährleistet ist. Zur Sicherung der Lebensdauer von Sitz und Kegel wird empfohlen, daß der Druckabfall auf Dauer

1.6 MPa nicht überschreitet. Anderenfalls sollte ein Lochkegel verwendet oder die Auflageflächen von Sitz und Kegel mit einer Hartmetallschicht versehen werden.

Weitere	Informat	ionen zu	r	Steuer	ung (Ant	rieb		VA-781	10-xxx-12	RA-3xx	x-712x	FA-10x	x-210x
Steueru	ng s. Blä	tter Antri	ebe	Bezeich	nnung in	der Typr	nummer	Е	CN	E	CI	Н	CJ
				Stellkra	ıft			1000 N	N ± 20%	100	0 N	700	N C
				Kvs [n	ո³/h]			Δ	p _{max}	Δp) _{max}	Δp) _{max}
DN	Н	1	2	3	4	5	6	Metall	PTFE	Metall	PTFE	Metall	PTFE
15			2.51)	1.61)	1.01)	0.61)	0.41)	4.00		4.00		4.00	
15		4.01)						3.40		4.00		2.82	
20				2.51)	1.61)	1.01)	0.61)	4.00		4.00		4.00	
20			4.0 ¹⁾					3.40		4.00		2.82	
20	13	6.31)						1.56		2.15		1.27	
25	13				2.51)	1.6 1)	1.0 ¹⁾	4.00		4.00		4.00	
25		10.0	6.32)	4.02)				0.88	1.29	1.24	1.65	0.69	1.11
32					4.0 ¹⁾			3.40		4.00		2.82	
32		16.0	10.0	6.3 ²⁾				0.45	0.77	0.67	0.99	0.34	0.66
40		25.0	16.0	10.0				0.23	0.49	0.38	0.63	0.16	0.42

Durchflußkoeffizienten Kvs und Differenzdruck für Ventile mit Pneumatikantrieben

Weitere	Informat	ionen zu	r	Pneum	atikantri	eb			MP	8000	
Steueru	ng s. Blä	tter Antri	ebe	Antrieb	sbezeich	nnung		MP822	2Cxx20	MP832	2Exx20
				Antrieb	sfunktion			dir	ekt	indi	rekt
				Federb	ereich		[bar]	0,2	- 0,5	0,6	- 0,9
				Federe	instellun	g	[bar]	0	,2	0	,6
				Versorg	ungsdru	ck	[bar]	1	,6	1	,1
				Bezeich	nnung in	der Typn	ummer		P	CA	
				Stellkra	ıft			176	60 N	96	0 N
				Kvs [n	n³/h]			Δ	O _{max}	Δι	O _{max}
DN	Н	1	2	3	4	5	6	Metall	PTFE	Metall	PTFE
15			2.51)	1.61)	1.01)	0.61)	0.41)	4.00		4.00	
15		4.0 ¹⁾						4.00		4.00	
20				2.51)	1.61)	1.01)	0.61)	4.00		4.00	
20			4.01)					4.00		4.00	
20	13	6.3 ¹⁾						4.00		2.03	
25	13				2.51)	1.6 ¹⁾	1.0 ¹⁾	4.00		4.00	
25		10.0	6.32)	4.0 2)				2.63	3.04	1.17	1.58
32					4.01)			4.00		4.00	
32		16.0	10.0	6.3 ²⁾				1.51	1.83	0.63	0.95
40		25.0	16.0	10.0				0.92	1.17	0.35	0.60

¹⁾ Parabolkegel

Lochkegel sind nur bei wie folgt bezeichneten Kvs-Werten und mit folgenden Einschränkungen lieferbar:

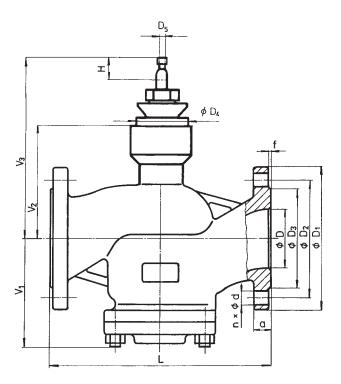
- Kvs-Werte 2.5 bis 1.0 m³/h nur mit linearer Charakteristik
- je naèh Kvs-Wert in Spalte 2 sind Lochkegel nur mit linearer oder parabolischer Charakteristik lieferbar.

Metall - Ausführung Sitzdichtung Metall - Metall

PTFE -Ausführung Sitzdichtung Metall - PTFE (nicht für geformte Kegel verwendbar)

Faltenbalgausführung ist nur für Parabolkegel verwendbar. Gleichprozentige, LDMspline $^{\circ}$ und parabolische Charakter. ab Kvs ≥ 1.0

Bei Ventilen PN 16 darf ∆p 1.6 MPa nicht überschreiten.


Die in der Tabelle angegebenen maximalen Differenzdruckwerte gelten für PTFE-Stopfbuchse oder O-Ring. Bei Faltenbalgausführung ist der Wert Δp_{max} mit dem Hersteller abzusprechen.

zylindr. Kegel mit linearer Charakteristik, Parabolkegel mit gleichprozentiger, LDM spline® und parabolischer Charakteristik

Ventile RV / HU 2x1 - Abmessungen und Gewicht

			PN	16					PN	40								PN 1	16, P	N 40					
DN	D ₁	D ₂	D ₃	d	n	а	D₁	D ₂	D ₃	d	n	а	D	f	D ₄	D ₅	L	V ₁	V ₂	$^{*}V_{2}$	V_3	$^{*}V_{_{3}}$	m₁	m ₂	"m _v
	mm	mm	mm	mm		mm	mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
15	95	65	45			16	95	65	45			16	15				130	68	98		169		4.5	5.5	
20	105	75	58	14		18	105	75	58	14		18	20	2			150	68	98		169		5.5	6.5	
25	115	85	68		4	18	115	85	68		4	18	25		54	10	160	85	103	238	174	309	6.5	8	3.5
32	140	100	78	10		18	140	100	78	10		18	32				180	85	103	238	174	309	8	9.5	3.5
40	150	110	88	18		18	150	110	88	18		18	40	3			200	85	103	238	174	309	9	11	3.5

- gilt für Ausführungen mit Faltenbalgstopfbuchse
 m_v Masse, die zum Ventilgewicht bei Faltenbalgausführung hinzuzurechnen ist
 m₁ Ventile RV / HU 211
 m₂ Ventile RV / HU 221 und RV / HU 231

200 line

RV 2x2 C

Regelventile DN 50 - 150, PN 16 und 40 mit Johnson Controls-Antrieben

Beschreibung

Die Regelventile RV 212, RV 222 und RV 232 (weiter nur RV 2x2) sind Einsitzarmaturen mit druckentlastetem Kegel zum Regeln und Schließen von Mediendurchflüssen. Diese Ausführung ermöglicht die Regelung bei hohem Druckabfall unter Verwendung relativ schwacher Antriebe. Durchflußcharakteristiken, Kvs-Koeffizienten und Leckrate entsprechen den internationalen Standards.

Ventile des Typs RV 2x2 C sind in ihrer Ausführung zum Anschluß an elektromechanische Antriebe der Firma Johnson Controls angepaßt.

Anwendung

Diese Ventile sind zur Anwendung in der Heiz- und Klimatechnik, in Energiewirtschaft und chemischer Industrie bestimmt. Je nach Betriebsbedingungen können die Antriebe aus Formguß, Gußstahl oder austenitischem Edelstahl gefertigt sein.

Die gewähl-ten Materialien entsprechen der ČSN-EN 1503-1 (1/2002) (Stahl) bzw. ČSN-EN 1503-3 (1/2002) (Guß). Der höchstzulässige Arbeitsüberdruck in Abhängigkeit von Material und Mediumtemperatur ist auf Seite 38 angegeben.

Arbeitsmedien

Ventile der Reihe RV 2x2 sind zum Regeln von Durchflußmenge und Druck von Flüssigkeiten, Gasen und Dampf ohne abrasive Beimischungen wie Wasser, Dampf, Luft und andere Medien, die mit dem Material der Armatur kompatibel sind, bestimmt. Die Verwendung von Ventilen aus Formguß (RV 212) bei Dampf ist durch folgende Parameter begrenzt: der Dampf muß überhitzt sein (Trockenheit am Eingang $x_i \ge 0,98$) und der Eingangsüberdruck $p_i \le 0,4$ MPa bei überkritischem Druckabfall bzw. $p_i \le 1,6$ MPa bei unterkritischem Druckabfall. Werden diese Parameter überschritten, sind Ventile aus Gußstahl (RV 222) zu verwenden. Zur Sicherung einer qualitativ hohen und zuverlässigen Regelung empfiehlt der Hersteller, vor das Ventil einen Filter zu setzen oder anderweitig sicherzustellen, daß das zu regelnde Medium keine abrasiven Beimischungen enthält.

Einbaupositionen

Das Ventil ist immer so in die Rohrleitung einzubauen, daß die Fließrichtung des Mediums mit den Pfeilen auf dem Gehäuse übereinstimmt. Die Einbauposition ist beliebig mit Ausnahme der Fälle, wo der Antrieb unter dem Ventil angebracht wird. Bei Mediumtemperaturen über 150°C ist der Antrieb vor übermäßiger Hitzeeinwirkung in der Rohrleitung zu schützen, z. B. durch geeignete Isolierung von Leitung und Ventil und Schwenken des Antriebs aus der senkrechten Achse.

Technische Parameter

Baureihe		RV 212	RV 222	RV 232							
Ausführung		Durchgangsreg	jelventil mit druckentlastetem k	Gegel, einsitzig							
Nennweitenbere	ich		DN 50 bis 150								
Nenndruck			PN 16, PN 40								
Material Gehäus	е	Formguß	Gußstahl	Rostfreier Gußstahl							
		EN-JS 1025	1.0619 (GP240GH)	1.4581							
		(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)							
Material Sitz	DN 50	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4							
DN 65 - 150 1.4027 / 42 2906.5 1.4027 / 42 2906.5 1.4581 / 42 2941.4											
Material Kegel:											
	DN 80 - 150	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4							
Arbeitstemperatu	urbereich	-20 bis 260°C	-20 bis 260°C	-20 bis 260°C							
Baulängen		Rei	ihe 1 nach ČSN-EN 558-1 (3/19	997)							
Anschlußflansch	е		nach ČSN-EN 1092-1 (4/2002))							
Flanschdichtfläcl	nen	Typ B1 (grobe Dichtleiste)) oder Typ F (Rücksprung) nach	ČSN-EN 1092-1 (4/2002)							
Kegeltyp		Zy	rlindr. mit Ausschnitten, Lochke	gel							
Durchflußcharak	teristik	linear, gleichpi	rozentig, LDMspline®, parabolis	ch, absperrend							
Kvs-Werte			16 bis 360 m³/h								
Leckrate		Klasse III. nach ČSN-EN 1349	(5/2001) (<0.1% Kvs) für Regelver	ntil mit Sitzdichtung Metall-Metall							
		Klasse IV. nach ČSN-EN 1349 (5/2001) (<0.01% Kvs) für Regelve	entil mit Sitzdichtung Metall-PTFE							
Regelverhältnis i	r		50 : 1								
Stopfbuchsendic	htung	O -Ring EPDM t _{max} =140	°C, DRSpack® (PTFE) t _{max} =260°0	C, Faltenbalg t _{max} =500°C							
Anmorlanda Für	niadriaa Arbait			1 1200 (quataniticahan maatfraian							

Anmerkung: Für niedrige Arbeitstemperaturen (-200 bis +250°C) ist das Ventil RV/UV 232 aus 1.4308 (austenitischer rostfreier Gußstahl) lieferbar.

Durchflußkoeffizienten Kvs und Differenzdruck bei Ventilen mit el.-mech. Antrieben

Der Wert $\Delta p_{\text{\tiny max}}$ ist der maximale Druckabfall am Ventil, bei dem ein zuverlässiges Öffnen und Schließen gewährleistet ist. Zur Sicherung der Lebensdauer von Sitz und Kegel wird empfohlen, daß der Druckabfall auf Dauer

1.6 MPa nicht überschreitet. Anderenfalls sollte ein Lochkegel verwendet oder die Auflageflächen von Sitz und Kegel mit einer Hartmetallschicht versehen werden.

Weiter	euerun	g siehe	Steue (Ant	erung rieb)	RA-3xx	xx-722x		(x-751x (x-751x	RA-	-3ххх	x-732	Х			x-741 x-741		F	A-33>	(x-741)	(
Blätter	Antrie	ре	Bez.	Typnr	. E	CI	EC	CK		EC	CI			EC	CK			E	CL	
			Stellk	raft	180	0 N	230	0 N	3	3000	NC			220	0 N			600	0 N	
		Kvs	[m³/h	1]	Δp	Δ p _{max}) _{max}		Δp_r	max			Δρ) _{max}			Δβ) _{max}	
DN	Н	1	2	3	kov	PTFE	Metall	PTFE	Meta	II	PT	FE	Meta	Ш	PT	FΕ	Me	tall	PTI	E
50	25	32.0	25.0	16.0	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)				-			-		-			-
65	25	50.0	40.0	25.0	4.00 (3.40)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)				-			-		-	-		-
80		100.0	63.0	40.0					4.00 (4.	.00) 4	4.00	(4.00)	4.00 (3	.30)	4.00	(4.00)	4.00	(4.00)	4.00 (4.00)
100 125	42	160.0	100.0	63.0					4.00 (3.	90)4	4.00	(4.00)	4.00 (2	.30)	4.00	(3.90)	4.00	(4.00)	4.00 (4.00)
125	42	250.0	160.0	100.0					4.00 (2.	70)	4.00	(4.00)	2.50 (1	.40)	4.00	(3.00)	4.00	(4.00)	4.00 (4.00)
150		360.0	250.0	160.0					3.00 (1.	90)4	4.00	(3.60)	1.30 (0	.80)	3.90	(2.50)	4.00	(4.00)	4.00 (4.00)

Durchflußkoeffizienten Kvs und Differenzdruck bei Ventilen mit Pneumatikantrieben

Der Wert $\Delta p_{\text{\tiny max}}$ ist der maximale Druckabfall am Ventil, bei dem ein zuverlässiges Öffnen und Schließen gewährleistet ist. Zur Sicherung der Lebensdauer von Sitz und Kegel wird empfohlen, daß der Druckabfall auf Dauer

1.6 MPa nicht überschreitet. Anderenfalls sollte ein Lochkegel verwendet oder die Auflageflächen von Sitz und Kegel mit einer Hartmetallschicht versehen werden.

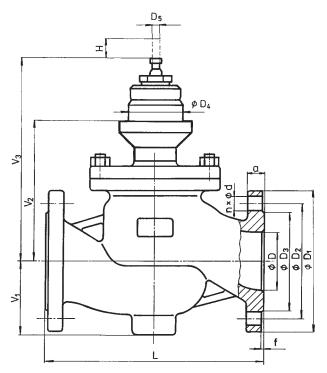
Weitere Info	orm. zur	Pneuma	tikantrieb					PA 2	2000			
Steuerung		Antriebsl	bezeichnu	ıng	PA-2xx	x-3312	PA-2xx	x-3327	PA-2xx	x-3712	PA-2xx	x-3727
Blätter Antri	iebe	Antriebsf	unktion		dir	ekt	indi	rekt	dir	ekt	indi	rekt
		Federber	eich	[bar]	0,2	- 0,5	0,7	- 1,0	0,2 -	- 0,5	0,7	- 1,0
		Federein	stellung	[bar]	0	,2	0	,7	0	,2	0	,7
		Versorgu	ngsdruck	[bar]	1	,6	1	,2	1.	,6	1	,2
		Bezeichr	nung in de	r Typnr.				P	CB			
		Stellkraft			330	00 N	210	00 N	660	0 N	420	00 N
		K	(vs [m³/h]		Δμ	O _{max}	Δβ	O _{max}	Δp) _{max}	Δρ	max
DN	Н	1	2	3	Metall	PTFE	Metall	PTFE	Metall	PTFE	Metall	PTFE
50	25	32.0	25.0	16.0	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)
65	25	50.0	40.0	25.0	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)	4.00 (4.00)

Weitere Info	ormationen	Pneuma	tikantrieb					PA:	2000			
zur Steueru		Antriebsl	bezeichur	ng		PA-2xx	(x-3612			PA-2xx	x-3627	
Blätter Antr	iebe	Antriebsf	unktion			dir	ekt			indi	rekt	
		Federber	eich	[bar]		0,2	- 0,5			0,7 -	- 1,0	
		Federein	stellung	[bar]		0	,2			0	,7	
		Versorgu	ngsdruck	[bar]		1	,6			1	,2	
		Bezeichr	nung in de	er Typnr.				P	CB			
		Stellkraft				660	00 N			420	0 N	
		K	(vs [m³/h]			Δ	P _{max}			Δ;	O _{max}	
DN	Н	1	2	3	Me	etall		ΓFE	Me	tall	PT	FE
80		100.0	63.0	40.0	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)
100	42	160.0	100.0	63.0	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)
125	42	250.0	160.0	100.0	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)	4.00	(4.00)
150		360.0	250.0	160.0	4.00	(4.00)	4.00	(4.00)	4.00	(3.60)	4.00	(4.00)

Parabolkegel sind nur bei wie folgt bezeichneten Kvs-Werten und mit folgenden Einschränkungen lieferbar:

Die in der Tabelle angegebenen maximalen Differenzdruckwerte gelten nur für PTFE-Stopfbuchse oder O-Ring. Bei Faltenbalgausführung ist $\Delta p_{\mbox{\tiny max}}$ mit dem Hersteller abzusprechen.

Metall -Ausführung mit Sitzdichtung Metall - Metall
PTFE -Ausführung mit Sitzdichtung Metall - PTFE
(xx) - Δp_{max} Werte in den Klammern gelten für Lochkegel


Bei Ventilen PN 16 darf ∆p 1.6 MPa nicht überschreiten.

⁻ je nach Kvs-Wert in Spalte 2 sind Parabolgel nur mit linearer oder parabolischer Charakteristik lieferbar

Ventile RV 2x2 - Abmessungen und Gewicht

		F	PN 16	3			F	PN 40)							F	PN 16	6, PN	40					
DN	D ₁	D ₂	D ₃	d	n	D ₁	D ₂	D ₃	d	n	D	f	D ₄	D ₅	L	V ₁	V_2	$^{*}V_{2}$	V ₃	$^{\#}V_{_{3}}$	а	m₁	m ₂	#m _v
	mm	mm	mm	mm		mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
50	165	125	102		4	165	125	102		4	50			12	230	85	150	338	216	404	20	14.5	21	4
65	185	145	122		41)	185	145	122	18		65			12	290	93	150	338	216	404	22	18.5	27	4
80	200	160	138	18		200	160	138			80	2	54		310	105	164	481	230	547	24	27.5	42	4.5
100	220	180	158		8	235	190	162	22	8	100		34	13.8	350	118	164	481	230	547	24	39	50	4.5
125	250	210	188		0	270	220	188	200		125			13.0	400	135	183	500	249	566	26	60	84	5
150	285	240	212	22		300	250	218	26		150				480	150	200	517	266	583	28	81	103	5

- unter Berücksichtigung früher gültiger Normen wurde die in der ČSN-EN 1092-1 angebotene Möglichkeit der Wahl der Anzahl der Verbindungsschrauben genutzt

 gilt für Ausführung mit Faltenbalgstopfbuchse
 m_v Masse, die zum Ventilgewicht bei Faltenbalgausführung hinzuzurechnen ist

- m₁ Ventile RV 212
- m₂ Ventile RV 222 und RV232

200 line

RV 2x4 C

Regelventile DN 15 - 150, PN 16 und 40 mit Johnson Controls-Antrieben

Beschreibung

Die Regelventile RV 214, RV 224 und RV 234 (weiter nur RV 2x4) sind Dreiwegearmaturen mit Misch- oder Verteilfunktion. Aufgrund der breiten Palette der verwendeten Antriebe sind sie zur Regelung bei niedrigem und mittlerem Druckabfall unter den verschiedensten Betriebsbedingungen geeignet. Durchflußcharakteristiken, Kvs-Koeffizienten und Leckrate entsprechen den internationalen Standards.

Ventile des Typs RV 2x4 C sind in ihrer Ausführung zum Anschluß an elektromechanische Antriebe der Firma Johnson Controls angepaßt.

Anwendung

Diese Ventile sind zur Anwendung in der Heiz- und Klimatechnik, in Energiewirtschaft und chemischer Industrie bestimmt. Je nach Betriebsbedingungen können die Antriebe aus Formguß, Gußstahl oder austenitischem Edelstahl gefertigt sein.

Die gewähl-ten Materialien entsprechen der ČSN-EN 1503-1 (1/2002) (Stahl) bzw. ČSN-EN 1503-3 (1/2002) (Guß). Der höchstzulässige Arbeitsüberdruck in Abhängigkeit von Material und Mediumtemperatur ist auf Seite 38 angegeben.

Arbeitsmedien

Ventile der Reihe RV 2x4 sind zum Regeln von Durchflußmenge und Druck von Flüssigkeiten, Gasen und Dampf ohne abrasive Beimischungen wie Wasser, Dampf, Luft und andere Medien, die mit dem Material der Armatur kompatibel sind, bestimmt. Die Verwendung von Ventilen aus Formguß (RV 214) für Dampf ist durch folgende Parameter eingeschränkt. Dampf muß überhitzt sein (Trockenheit am Eingang x, ≥ 0,98) und der Eingangsüberdruck p, ≤ 0,4 MP bei überkritischem Druckabfall bzw. p,≤ 1,6 MP bzw. bei unterkritischem Druckabfall. Werden diese Parameter überschritten, sind Ventile aus Gußstahl(RV 224) zu verwenden. Zur Sicherung einer zuverlässigen Regelung empfiehlt der Hersteller, vor das Ventil einen Filter zu setzen oder anderweitig sicherzu-stellen, daß das Medium keine abrasiven Gemische oder andere mechanische Unreinheiten enthält.

Einbaupositionen

Bei Verwendung als Mischventil ist das Ventil so einzubauen, daß die Fließrichtung des Mediums mit den Pfeilen auf Gehäuse und Stutzen übereinstimmt (Eingänge A, B und Ausgang AB). Bei Verteilern ist die Fließrichtung entgegengesetzt (Eingang AB und Ausgänge A, B). Die Einbauposition ist beliebig mit Ausnahme der Fälle, wo der Antrieb unter dem Ventil angebracht wird. Bei Mediumtemperaturen über 150°C ist der Antrieb vor übermäßiger Hitzeeinwirkung zu schützen, z. B. durch geeignete Isolierung von Leitung und Ventil und Schwenken

Technische Parameter

Baureihe		D) / 04.4	DV / 00 /	D) / 00 /						
244.00		RV 214	RV 224	RV 234						
Ausführung			Dreiwegeregelventil							
Nennweitenberei	ch		DN 15 bis 150							
Nenndruck			PN 16, PN 40							
Material Gehäus	е	Formguß	Gußstahl	Rostfreier Gußstahl						
		EN-JS 1025	1.0619 (GP240GH)	1.4581						
		(EN-GJS-400-10-LT)	1.7357 (G17CrMo5-5)	(GX5CrNiMoNb19-11-2)						
Material Sitz:	DN 15 - 50	1.4028 / 17 023.6	1.4028 / 17 023.6	1.4571 / 17 347.4						
	DN 65 - 150 1.4027 / 42 2906.5 1.4027 / 42 2906.5 1.4581 / 42 2941									
Material Kegel:	217.00 100									
_	DN 80 - 150	1.4027 / 42 2906.5	1.4027 / 42 2906.5	1.4581 / 42 2941.4						
Arbeitstemperatu	ırbereich	-20 bis 300°C	-50 bis 550°C	-20 bis 300°C						
Baulängen		Rei	ihe 1 nach ČSN-EN 558-1 (3/19	997)						
Anschlußflansch	е		nach ČSN-EN 1092-1 (4/2002)							
Flanschdichtfläch	nen	Typ B1 (grobe Dichtleiste)	oder Typ F (Rücksprung) nach	ČSN-EN 1092-1 (4/2002)						
Kegeltyp		zyliı	ndr. mit Ausschnitten, Parabolke	egel						
Durchflußcharak	teristik	Linea	ar, gleichprozentig im direkten Z	Zweig						
Kvs-Werte			1.6 bis 360 m³/h							
Leckrate		Klasse III. nach ČSN-EN 1349	(5/2001) (<0.1% Kvs) für Regelver	ntil mit Sitzdichtung Metall-Metall						
		Klasse IV. nach ČSN-EN 1349 ((5/2001) (<0.01% Kvs) für Regelve	entil mit Sitzdichtung Metall-PTFE						
Regelverhältnis			50 : 1							
Stopfbuchsendic	htung	O - Ring EPDM t _{max} = 140°C, DF	RSpack® (PTFE) t _{max} =260°C, Exp.	Graphit, Faltenbalg t _{max} = 500°C						

Anmerkung: Für niedrige Arbeitstemperaturen (-200 bis +250°C) ist das Ventil RV/UV 234 aus 1.4308 (austenitischer rostfreier Gußstahl) lieferbar.

Durchflußkoeffizienten Kvs und Differenzdruck bei Ventilen mit elektromechanischen und elekrohydraulischen Antrieben

Weitere Ir zur Steue	rung s.	Steueru	ıng (Ant	rieb)	VA-781 -xxx-12	-	RA-3xxx-712x	FA-10xx-210x	RA-3xxx-722x	FA-22xx-751x FA-25xx-751x		FA-33xx-741x
Blätter An	itriebe	Bezeich	nung in	Typnr.	ECN		ECI	HCJ	ECI	ECK	ECI	ECL
		Stellkra	ft		1000 t ±20%		1000 N	700 N	1800 N	2300 N	3000 N	6000 N
		K۱	/s [m³/h]		Δp_{max}		Δp_{max}	Δp_{max}	Δp_{max}	Δp_{max}	Δp_{max}	Δp_{max}
DN	Н	1	2	3	Met. PTF	FE	Met. PTFE	Met.PTFE	Met. PTFE	Met.PTFE	Met.PTFE	Met. PTFE
15			2.5 1)	1.6 ¹⁾	1.79		4.00	0.65				
15		4.0 1)			0.75		1.92	0.16				
20				2.51)	1.79		4.00	0.65				
20	13		4.0 1)		0.75		1.92	0.16				
20	13	6.3 ¹⁾			0.23		0.82					
25		10.0	6.3 2)	4.0 2)	0.05 0.4	46	0.42 0.83	0.28				
32		16.0	10.0	6.32)	0.2	27	0.17 0.49	0.16				
40		25.0	16.0	10.0	0.	17	0.06 0.31	0.10				
50	25	40.0	25.0	16.0					0.33 0.52	0.54 0.74		
65	23	63.0	40.0	25.0					0.16 0.32	0.29 0.45		
80		100.0	63.0	40.0							0.19 0.32	0.73 0.86
100	42	160.0	100.0	63.0							0.10 0.21	0.45 0.56
125	42	250.0	160.0	100.0							0.05 0.13	0.27 0.36
150		360.0	250.0	160.0							0.02 0.09	0.18 0.25

Durchflußkoeffizienten Kvs und Differenzdruck bei Ventilen mit Pneumatikantrieb

Weitere Ir		Pneum	atikantri	eb			8000								2000					
zur Steue		Antrieb	sbezeic	hnung	MP822	Exx20	MP832	2Exx20	PA-2xx	x-3317	PA-2xx	x-3327	PA-2xx	x-3717	PA-2xx	x-3727	PA-2xx	x-3617	PA-2xx	x-3627
Blätter An	triebe	Antrieb	sfunktior	ı	dir	ekt	indi	irekt	dir	ekt	indi	irekt	dir	ekt	indi	rekt	dir	ekt	indi	rekt
		Federb	ereich	[bar]	0,6	- 0,9	0,6	- 0,9	0,7	- 1,0	0,7	- 1,0	0,7 -	- 1,0	0,7	- 1,0	0,7	- 1,0	0,7	- 1,0
		Federe	instellur	ng [bar]	0	,6	0	,6	0	,7	0	,7	0	,7	0	,7	0	,7	0	,7
		Versorg	gungsdru	ıck [bar]	1,	,6		,1	1	,6	1	,2	1.	,6		,2	1	,6		,2
			nung in			PO	CA							P	СВ					
		Stellkra	aft		112	0 N	96	0 N	180	00 N	210	00 N	360	0 N	420	0 N	360	00 N	420	0 N
		K۱	Kvs [m³/h] 1 2 3		Δι	O _{max}	Δι	p _{max}	Δ	D _{max}	Δ	P _{max}	Δβ	O _{max}	Δι	O _{max}	Δι	O _{max}	Δβ	O _{max}
DN	Н	1	2	3	Met.	PTFE	Met.		Met.			PTFE			Met.		Met.		Met.	
15			2.5 1)	1.6 ¹⁾	4.00		3.61													
15		4.0 1)			2.63		1.69													
20				2.51)	4.00		3.61													
20	40		4.0 1)		2.63		1.69													
20	13	6.3 ¹⁾			1.17		0.70													
25		10.0	6.3 ²⁾	4.02)	0.63	1.05	0.34	0.75												
32		16.0	10.0	6.32)	0.31	0.63	0.13	0.45												
40		25.0	16.0	10.0	0.14	0.40	0.03	0.28												
50	25	40.0	25.0	16.0					0.33	0.52	0.46	0.65	1.10	1.29	1.35	1.54				
65	25	63.0	40.0	25.0					0.16	0.32	0.24	0.39	0.63	0.78	0.79	0.94				
80		100.0	63.0	40.0													0.30	0.43	0.41	0.54
100	40	160.0	100.0	63.0													0.17	0.28	0.24	0.35
125	42	250.0	160.0	100.0													0.09	0.18	0.14	0.22
150		360.0	250.0	160.0													0.05	0.12	0.08	0.16

Der Wert $\Delta p_{\text{\tiny max}}$ ist der maximale Druckabfall am Ventil, bei dem ein zuverlässiges Öffnen und Schließen gewährleistet ist. Zur Sicherung der Lebensdauer von Sitz und Kegel wird empfohlen, daß der Druckabfall auf Dauer

1.6 MPa nicht überschreitet. Anderenfalls sollte ein Lochkegel verwendet oder die Auflageflächen von Sitz und Kegel mit einer Hartmetallschicht versehen werden.

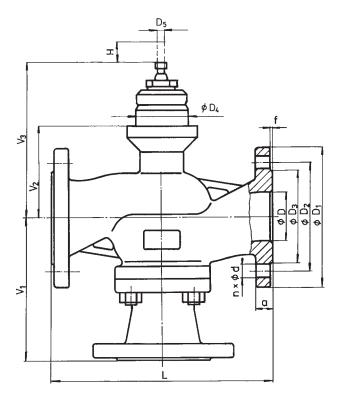
Faltenbalgausführung nur für zylindr. Kegel möglich.

Bei Ventilen PN 16 darf Δ p 1.6 MPa nicht überschreiten.

Metall - Ausführung mit Sitzdichtung Metall - Metall

PTFE - Ausführung mit Sitzdichtung Metall - PTFE (nicht für geformte Kegel)

Die in der Tabelle angegebenen maximalen Differenzdruckwerte gelten nur für PTFE-Stopfbuchse oder O-Ring. Bei Faltenbalgausführung ist $\Delta p_{\ \ max}$ mit dem Hersteller abzusprechen. Gleiches gilt bei Verwendung von Graphitbuchsen, wenn sich der geforderte Δp -Wert den in der Tabelle angegebenen Maximalwerten nähert.


¹⁾ Kegel im direkten Zweig Parabolkegel, im Abzweig zylindr.

²⁾ im Abzweig zylindr. Kegel, im direkten Zweig für lineare Charakteristik zylindr., für gleichprozentige Charakteristik Parabolkegel

Ventile RV 2x4 - Abmessungen und Gewicht

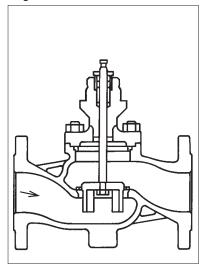
		F	PN 16	3				PN 40)			PN 16, PN 40												
DN	D ₁	D ₂	D ₃	d	n	D ₁	D ₂	D ₃	d	n	D	f	D ₄	D ₅	L	V ₁	V ₂	$^{*}V_{_{2}}$	V ₃	$^{*}V_{_{3}}$	а	m ₁	m ₂	#m _v
	mm	mm	mm	mm		mm	mm	mm	mm		mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	mm	kg	kg	kg
15	95	65	45			95	65	45			15				130	110	98		156		16	5.5	6	
20	105	75	58	14		105	75	58	14		20				150	115	98		156		18	6.5	7	
25	115	85	68			115	85	68		1	25				160	130	103	238	161	296	18	8.3	9.5	3.5
32	140	100	78		4	140	100	78		4	32			12	180	135	103	238	161	296	20	10.5	12	3.5
40	150	110	88			150	110	88			40				200	140	103	238	161	296	20	12	13.5	3.5
50	165	125	102			165 125 102 18		50	2	54		230	175	110	298	176	364	20	17	24	4			
65	185	145	122	18	4 ¹⁾	185	145	122			65				290	180	110	298	176	364	22	22	31	4
80	200	160	138			200	160	138			80				310	220	123	440	189	506	24	31	43	4.5
100	220	180	158		8	235	190	162	22	8	100			13.8	350	230	123	440	189	506	24	44	55	4.5
125	250	210	188		0	270	220	188	26		125			13.0	400	260	151	468	217	534	26	65	90	5
150	285	240	212	22		300	250	218	20		150				480	290	151	468	217	534	28	94	120	5

- Unter Berücksichtigung früher gültiger Normen wurde die in der ČSN-EN 1092-1 angebotene Möglichkeit der Wahl der Anzahl der Verbindungsschrauben genutzt
 gilt für Ausführungen mit Faltenbalgstopfbuchse m_v- Masse, die zum Ventilgewicht bei Faltenbalgausführung hinzuzurechnen ist

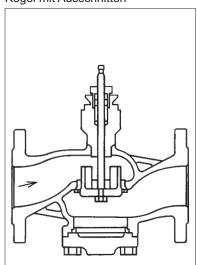
- $m_{_1}$ Ventile RV 214 $m_{_2}$ Ventile RV 224 und RV 234

Zusammens. der kpl. Ventiltypenbezeichn. RV 2x0, RV / HU 2x1, RV 2x2, RV 2x4

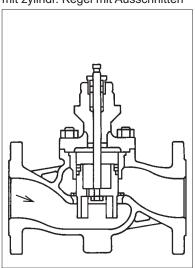
1. Ventil	Regelventil		^^ RV	^ ^ ^	^ ^ ^	XXXX	^ ^	- ^^	/ ///	- //
r. venui	Havarieverschlüsse		HU							
Typhozoichnung		Г	יטר	2 1						
2. Typbezeichnung	Ventile aus Formguß 2304	2714 2744	-							
	Ventile aus Gußstahl 2643, 2		-	22						
	Ventile aus rostfreiem Stahl	2941		23						
	Direktventil		\dashv	0						
	Reverses Ventil			1						
	Direktventil, druckentlastet			2						
	Mischventil (Verteiler)			4	_					
3. Steuerungsart	Elektroantrieb				E					
$t_{max} = 140^{\circ} \text{C}$	Pneumatikantrieb		_		P					
⁵⁾ Antriebe mit Havariefunktion	Elektrohydraulischer Antrieb	10 1)			Н					
	Elektroantrieb VA-7810-xxx-				ECN					
	Elektroantrieb RA-3xxx-7xxx				ECI					
	Elektrohydraul. Antrieb FA-1				HCJ					
	Elektroantrieb FA-2xxx-7x1x				ECK					
	Elektroantrieb FA-33xx-741x	(ECL					
	Pneumatikantrieb MP 8000				PCA					
	Pneumatikantrieb PA 2000				PCB					1
1. Anschlußart	Flansch mit grober Dichtleist	te				1				
	Flansch mit Rücksprung					2				
5. Material Körper	Kohlenstoffstahl 42 2643.1	(-20 bis 400°C)				1				
	Formguß 42 2304.1	(-20 bis 300°C)				4				
	Manganstahl 42 2714.1l	(-50 bis 400°C)				6				
	CrMoV-Stahl 42 2744.5	(-20 bis 550°C)				7				
(in Klammmern Arbeits-	Rostfreier Stahl 42 2941.4	(-20 bis 300°C)				8				
temperaturbereiche)	Andere Materialien nach Ver	einbarung				9				
6. Sitzdichtung	Metall - Metall					1				
²⁾ ab DN 25; t _{max} = 260°C	Weiche Dicht. (Metall - PTFE)	im dir. Zw. 2)				2				
- 1100	Dichtflächen mit Hartmetallauf					3				
7. Stopfbuchsenart	O - Ring EPDM	January 1				1				
3) Nicht für RV 2x2	DRSpack® (PTFE)					3				
	Expandierter Graphit 3)					5				
	Faltenbalg					7				
	Faltenbalg mit Sicherheitsbuch	nse PTFE				8				
	Faltenbalg mit Sicherheitsbuch					9				
3. Durchflußcharakteristik	Linear	об отартис					L			
4) Nicht für RV 2x4	Gleichprozentig						R			
NIGHT HAI TO ZX4	LDMspline ^{® 4)}						S			
	Parabolisch 4)						P			
	Linear - Lochkegel 4)						D			
	Gleichprozentig - Lochkegel	4)					Q			
	Parabolisch - Lochkegel 4)						Z			
9. Kvs	Spaltennr. nach Kvs-Tabelle						X			
). Nenndruck PN	PN 16							16		
. NEIHUIUK FIN	PN 40		\dashv					_		
Arhaitatamparatur °C			\dashv					40	140	+
I. Arbeitstemperatur °C	O - Ring EPDM		\dashv						140	+
	DRSpack® (PTFE), Faltenbal		\dashv						220	+
	DRSpack® (PTFE), Faltenbal		-						260	-
	Expandierter Graphit, Falten		_						300	1
	Expandierter Graphit, Falten	balg "							400 550	+
	Expandierter Graphit, Falten	3)	- 1							


Bestellbeispiel:

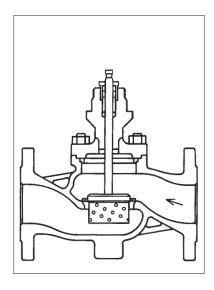
Durchgangsregelventil DN 65, PN 40, mit Elektroantrieb RA-3105-7227, aus Formguß, grobe Dichtleiste, Sitzdichtung Metall-PTFE, PTFE-Stopfbuchse, lineare Charakteristik, Kvs = 63 m³/h wird bezeichnet: RV 210 ECI 1423 L1 40/220-65


Ventile RV 2x0

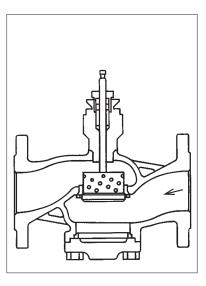
Schnitt durch Ventil mit zylindr. Kegel mit Ausschnitten

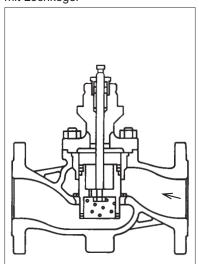

Ventile RV / HU 2x1

Schnitt durch Ventil mit zylindr. Kegel mit Ausschnitten

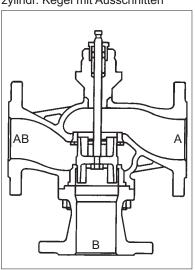


Ventile RV 2x2


Schnitt durch druckentlastetes Ventil mit zylindr. Kegel mit Ausschnitten


Schnitt durch Ventil mit Lochkegel

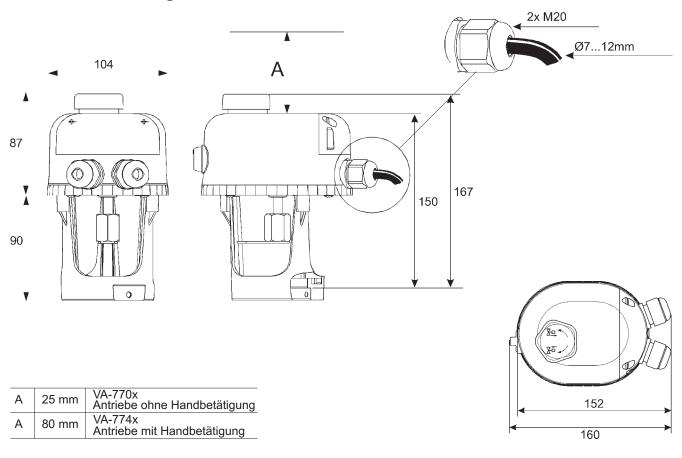
Schnitt durch Ventil mit Lochkegel



Schnitt durch druckentlastetes Ventil mit Lochkegel

Ventile RV 2x4

Schnitt durch Dreiwegeventil mit zylindr. Kegel mit Ausschnitten

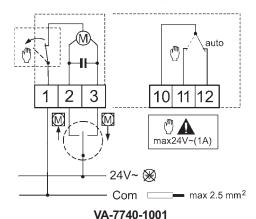

ECM

Elektroantriebe VA-715x-100x Johnson Controls

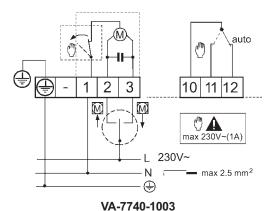
Technische Parameter

Тур	VA-77xx-100x
Bezeichnung in der Ventiltypnummer	ECM
Versorgungsspannung	24 V AC, 230 V AC
Frequenz	50 / 60 Hz
Leistungsaufnahme	2,4 VA
Steuersignal	3 - Punkt, 0 - 10 V, 0 (4) - 20mA
Stellgeschwindigkeit	6 mm/min (für 50 Hz)
Nennkraft	500 N ± 20%
Hub	max. 20 mm
Schutzart	IP 54
Maximale Mediumtemperatur	140°C
Zulässige Umgebungstemperatur	-5 bis 55°C
Zulässige Umgebungsfeuchte	10 - 90% ohne Kondensation
Gewicht	0,8 kg

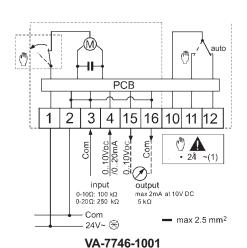
Antriebsabmessungen



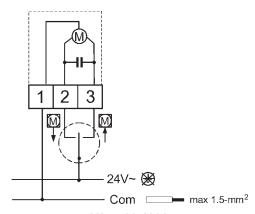
Antriebsspezifikation VA-77xx-100x


		VA - 77	(X	: -	1	0 0	X
Augstottung	Indirekter Antrieb ohne Rückführung	()				
Ausstattung	Stetige Steuerung mit Signal 0 - 10 V	4	1				
01	3 - Punkt		C				
Steuerung	Stätig 0-10 V / 0 (4) - 20 mA		6				
Versorgungs-	24 V						1
spannung	230 V (nur die Antriebe mit 3-Punkt Steuerung)						3

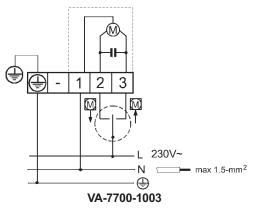
Anschlußschema der Antriebe


(Modele mit Handbetätigung)

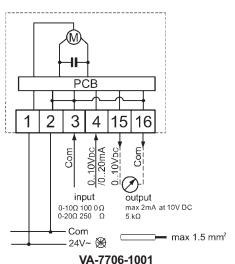
3-Punkt Steuerung, Versorgungsspannung 24 V AC



3-Punkt Steuerung, Versorgungsspannung 230 V AC



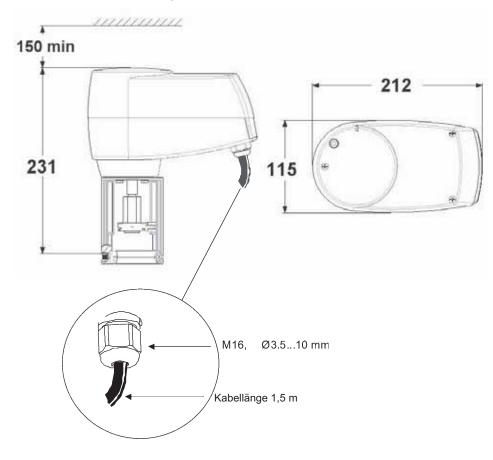
Stetige Steuerung, Versorgungsspannung 24 V AC


(Modele ohne Handbetätigung)

VA-7700-1001 3-Punkt Steuerung, Versorgungsspannung 24 V AC

3-Punkt Steuerung, Versorgungsspannung 230 V AC

Stetige Steuerung, Versorgungsspannung 24 V AC



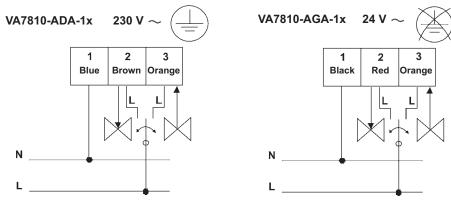
Elektroantriebe VA-72xx-xx0x Johnson Controls

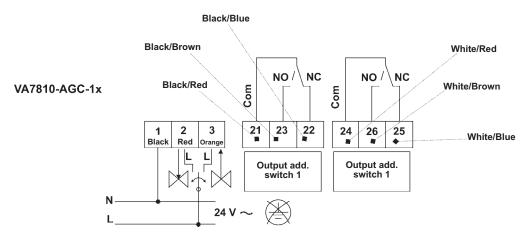
Technische Parameter

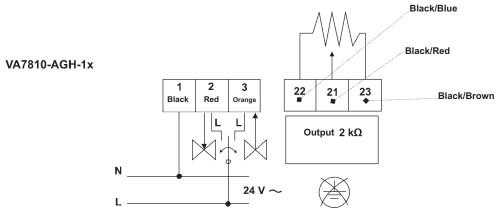
Тур	VA-7810-xxx-1x
Bezeichnung in der Ventiltypnummer	ECN
Versorgungsspannung	24 V AC oder 230 V AC
Frequenz	50 / 60 Hz
Leistungsaufnahme	max. 8 VA
Steuersignal	3-Punkt oder 0 (2) - 10 V, 0 (4) - 20 mA
Stellgeschwindigkeit	10 mm / min.
Nennkraft	1000 N ± 20 %
Hub	max. 25 mm
Schutzart	IP 54
Maximale Mediumtemperatur	140°C
Zulässige Umgebungstemperatur	-5 bis 55°C
Zulässige Umgebungsfeuchte	10 - 90 % ohne Kondensation
Gewicht	1,7 kg

Antriebsabmessungen

Antriebsspezifikation VA-72xx-xx0x

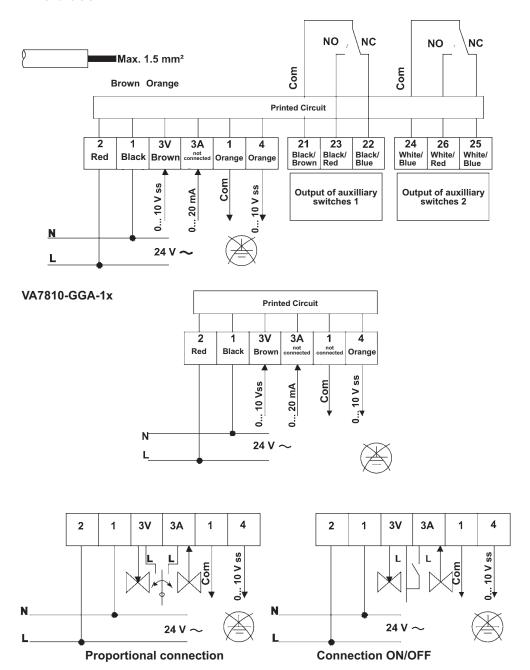

	VA - 7810	- Y Y Y	_ Y Y
	220 V A C	ADA	- / /
3-Punkt Steuerung	24 V AC	AGA	
	24 V AC, 2 zusätzliche Schalter	AGC	
	24 V AC, Rückmeldungpotenciometer 2 kΩ	AGH	
Stetige Steuerung	24 V AC, 0 (2) - 10 V oder 0 (4) - 20 mA	GGA	
	24 V AC, 0 (2) - 10 V oder 0 (4) - 20 mA, 2 zusätzliche Schalter	GGC	
Verbindung für Typ	Scchraubverbindung (RV 102, RV 103)		11
des Ventiles	Klemmverbindung (200 line)		12


Anschlußschemata der Antriebe


Die Antriebe werden mit Kabel mit Länge 150 cm geliefert.

Nummerbezeichnung des Kabels entspricht der Bezeichnung der Klemmen des Antriebes, wie unten angegeben.

3-Punkt Steuerung

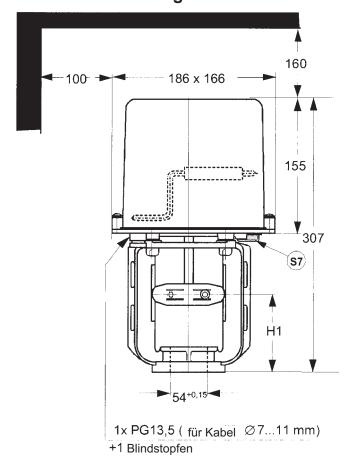


Die Antriebe werden mit Kabel mit Länge 150 cm geliefert.

Nummerbezeichnung des Kabels entspricht der Bezeichnung der Klemmen des Antriebes, wie unten angegeben.

Stetige Steuerung

VA7810-GGC-1x



Elektroantriebe RA-3xxx-7xxx Johnson Controls

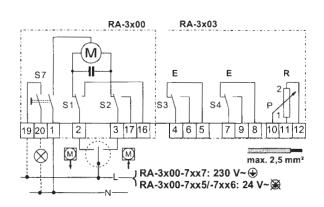
Technische Parameter

Тур	RA-3xxx-712x	RA-3xxx-722x	RA-3xxx-732x			
Bezeichnung in der Ventiltypnr.		ECI				
Versorgungsspannung		24V oder 230 V				
Frequenz		50 / 60 Hz				
Leistungsaufnahme	7 VA, mit Positionierer 9 VA	10 VA, mit Positionierer 12 VA	16 VA, mit Positionierer18 VA			
Steuersignal		3 - Punkt oder 0 - 10 V				
Stellgeschw. bei 50 (60) Hz	9,6 (11,5) mm/min	14,4 (17,2) mm/min	13,6 (16,3) mm/min			
Nennkraft	1000 N	1800 N	3000 N			
Hub	13 mm	25 mm	42 mm			
Schutzart		IP 54				
Maximale Mediumtemperatur		bestimmt durch verwendete	Armatur			
Zulässige Umgebungstemp.	-10 I	ois 60°C (Steuersignal 0 - 10 V	-10 bis 50°C)			
Zulässige Umgebungsfeuchte	90 % ohne Kondensation					
Gewicht	4,2 kg	4,2 kg	4,4 kg			

Antriebsabmessungen

	H1
RA-3xxx-712x	58 mm
RA-3xxx-722x	66 mm
RA-3xxx-732x	66 mm

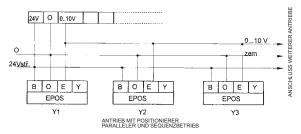
Antriebsspezifikation RA-3xxx-7xxx


		RA-3	X	ΧХ	- 7	XXX
Handrad	ohne		0		П	
	mit Handrad		1			
Zubehör	ohne			0 0		
(vom Hersteller zu installieren)	2 Zusatzschalter und Rückführpotentiometer 2 k Ω			03		
	2 Zusatzschalter und Rückführpotentiometer 135 k Ω			0 5		
	Eingebauter Elektronikpositionierer 0-10 V DC und zwei Zusatzschalter (nur 24 V)			4 1		
Antriebskraft und	1000 N 24 V AC, 50/60 Hz					126
Versorgungs-	1000 N 230 V AC, 50/60 Hz					127
spannung	1800 N 24 V AC, 50/60 Hz					226
	1800 N 230 V AC, 50/60 Hz					227
	3000 N 24 V AC, 60 Hz					325
	3000 N 24 V AC, 50 Hz					3 2 6
	3000 N 230 V AC, 50 Hz					327

Zubehör

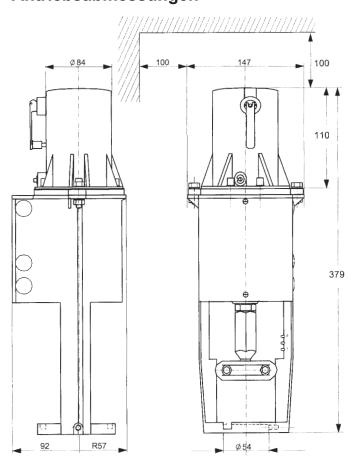
EQ-5687-7011	2 Zusatzschalter und Rückführpotentiometer 2 kΩ
252 3501 114	Kabelverschraubung PG 13,5 (∅ 711 mm) DIN 46320 - FS

Anschlußschemata der Antriebe


3-Punkt-Modelle (PAT)

Stetige Modelle

Antriebe (nur Modelle 24 V) mit eingebautem Positionierer für Regler mit Ausgang 0-10 V



Elektrohydraulikantriebe FA-10xx-210x Johnson Controls

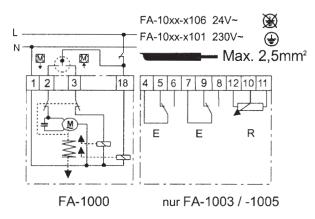
Technische Parameter

Тур	FA-10xx-210x
Bezeichnung in der Ventiltypennummer	ECJ
Versorgungsspannung	24 V oder 230 V
Frequenz	50 / 60 Hz
Leistungsaufnahme	20 VA, mit Direktsteuerung 23 VA
Steuersignal	3 - Punkt oder 0 10 V / 0 20 mA
Stellgeschwindigkeit	6,5 mm/min
Sicherheitsfunktion	20 ± 10 s
Nennkraft	700 N
Hub	13 mm
Schutzart	IP 54
Maximale Mediumtemperatur	bestimmt durch die verwendete Armatur
Zulässige Umgebungstemperatur	-5 bis 50°C
Zulässige Umgebungsfeuchte	95 % ohne Kondensation
Gewicht	3,5 kg

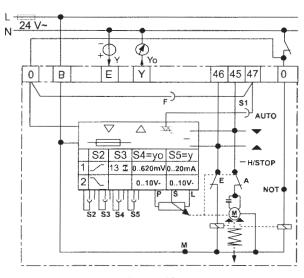
Antriebsabmessungen

Antriebsspezifikation FA-10xx-210x

		FA-10 X X -	210 X
Zubehör	ohne	0 0	
(vom Hersteller zu installieren)	2 Zusatzschalter und Rückkopplungspotentiometer 2 kΩ	0 3	
	2 Zusatzschalter und Rückkopplungspotentiometer 130 kΩ	0 5	
	Eingebauter elektronischer Positonierer 0 10 V / 0 20 mA (nur Modelle 24 V)	4 0	
Versorgungs-	230 V AC, 50/60 Hz		1
spannung	24 V AC, 50/60 Hz		6


Zubehör

111 6133 010	2 Signalschalter (nicht für Typen 0 10 V)
111 6134 010	Rückkopplungspotentiometer 2 kΩ (nicht für Typen 0 10 V)
111 6135 010	Rückkopplungspotentiometer 130 kΩ (nicht für Typen 0 10 V)
282 3501 113	PG 11 x 7 9 mm Schraube
111 6142 010	* 24V Hydraulikeinheit (Ersatzteil)
111 6142 020	* 230V Hydraulikeinheit (Ersatzteil)

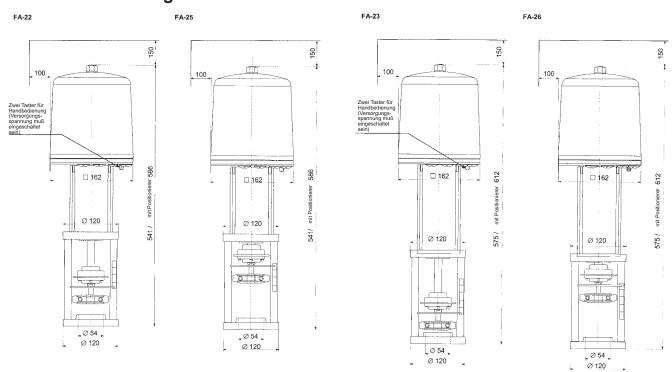

^{*} Hvdraulikpumpe und -motor

Anschlußschemata der Antriebe

3-Punkt-Modelle (PAT)

stetige Modelle

FA-1040



Elektroantriebe FA-2xxx-7x1x Johnson Controls

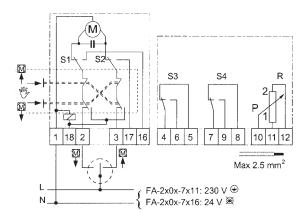
Technische Parameter

Тур	FA-22xx-751x	FA-25xx-751x	FA-23xx-741x	FA-26xx-741x			
Bezeichnung in der Ventiltypennr.	ECK						
Versorgungsspannung		24 V ode	er 230 V				
Frequenz		50	Hz				
Leistungsaufnahme		24 V = 6,1 VA	: 230 V = 5 VA				
Steuersignal	3 -Punkt oder 0 10 V / 0 20 mA						
Stellgeschwindigkeit	17,5 mm/min						
Nennkraft	2400 N 2200 N						
Hub	25 mm 42 mm						
Schutzart	IP 54						
Maximale Mediumtemperatur	bestimmt durch die verwendete Armatur						
Zulässige Umgebungstemp.	-20 bis 60°C						
Zulässige Umgebungsfeuchte	90 % ohne Kondensation						
Gewicht	9,4	l kg	9,8	kg			

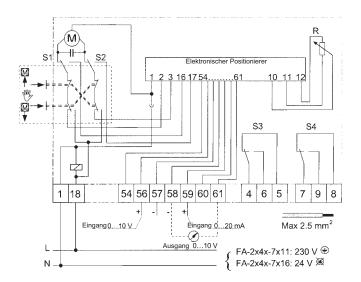
Antriebsabmessungen

Antriebsspezifikation FA-2xxx-7x1x

	FA-	2 X	XX	- 7X1	X
Rückholfeder	Sicherheitslage :Schaft voll ausgefahren	2		751	
	Sicherheitslage :Schaft voll eingeschoben	5		751	
	Sicherheitslage :Schaft voll ausgefahren	3		741	
	Sicherheitslage :Schaft voll eingeschoben	6		141	
Zubehör	ohne		0 0		
(vom Hersteller zu installieren)	2 Zusatzschalter		0 1		
	Rückführpotentiometer 2 k Ω		0 2		
	2 Zusatzschalter und Rückführpotentiometer 2 kΩ		0 3		
	Rückführpotentiometer 135 kΩ		0 4		
	Eingebauter elektronischer Positionierer 0 10 V / 0 20 mA (nur Modelle 24 V)		4 0		
	2 Zusatzschalter und eingebauter elektronischer Positionierer 0 10 V / 0 20 mA		4 1		
Versorgungs-	230 V, 50 Hz				1
spannung	24 V, 50 Hz				6


Zubehör

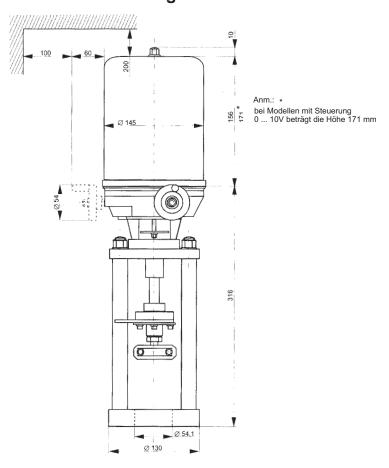
EQ-1008-7101		2 Signalschalter		
EQ-1007-7101		Ersatzplatine Antriebselektronik		
EQ-1009-7101	-25	System Positionsanzeiger 2 Ω Rückmelder (nicht für Typen 0 10 V)		
EQ-1029-7101	یظ	System Positionsanzeiger 135 Ω Rückmelder (nicht für Typen 0 10 V)		
EQ-1010-7101	pro 22 a F	* Potentiometer 2 kΩ (nicht für Typen 0 10 V)		
EQ-1030-7101	₫	* Potentiometer 135 kΩ (nicht für Typen 0 10 V)		
EQ-1016-7101	-26	System Positionsanzeiger 2 Ω Rückmelder (nicht für Typen 0 10 V)		
EQ-1017-7101	یظ	System Positionsanzeiger 135 Ω Rückmelder (nicht für Typen 0 10 V)		
EQ-1018-7101	pro 23 a FA	* Potentiometer 2 kΩ (nicht für Typen 0 10 V)		
EQ-1019-7101	₫	* Potentiometer 135 kΩ (nicht für Typen 0 10 V)		


^{*} Modelle mit Positionsindikator haben das System standardmäßig installiert

Anschlußschemata der Antriebe

3-Punkt-Modelle (PAT) FA-2x0x-7x1x

Stetige Modelle FA-2x4x-7x1x



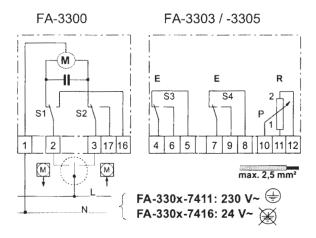
Elektroantriebe FA-33xx-741x Johnson Controls

Technische Parameter

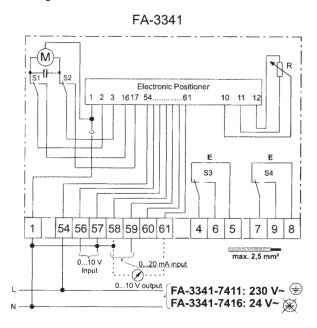
Тур	FA-33xx-741x
Bezeichnung in der Ventiltypennummer	ECL
Versorgungsspannung	24 V oder 230 V
Frequenz	50 Hz
Leistungsaufnahme	37 VA (42 VA mit Positionierer)
Steuersignal	3 - Punkt oder 0 - 10 V
Stellgeschwindigkeit	17 mm/min
Nennkraft	6000 N + 300 N
Hub	42 mm; max. 45 mm
Schutzart	IP 65
Maximale Mediumtemperatur	bestimmt durch die verwendete Armatur
Zulässige Umgebungstemperatur	-20 bis 60°C
Zulässige Umgebungsfeuchte	90 % ohne Kondensation
Gewicht	7,5 kg

Antriebsabmessungen

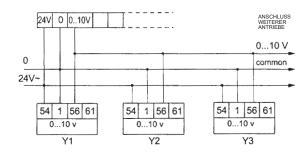
Antriebsspezifikation FA-33xx-741x


		FA-33 X X -	- 741 X
Zubehör	ohne	0.0	
(durch Hersteller installiert)	2 zusätzliche Schalter und Rückführpotentiometer 2 kΩ	0 3	
	Rückführpotentiometer 135 k Ω	0 4	
	Eingebauter Elektronikpositionierer 0 10 V / 0 20 mA und 2 Zusatzschalter	4 1	
Versorgungs-	230 V AC, 50 Hz		1
spannung	24 V AC, 50 Hz		6

Zubehör


EQ-1003-7101	2 Zusatzschalter und Rückführpotentiometer 2 kΩ		
EQ-1013-7101	Rückführpotentiometer 135 kΩ		
EQ-1015-7101	Elektronikpositionierer 0 10 V oder 0 20 mA, Einschubmodul zum Vor-Ort-Austausch (Ersatzteil)		

Anschlußschemata der Antriebe


3-Punkt-Modelle (PAT)

Stetige Modelle

Antriebe mit eingebautem Positionierer für Regler mit Ausgang 0-10 V

Antrieb mit Positionierer parallel und in Sequenzbetrieb

Pneumatikantrieb MP-8000 Johnson Controls

Technische Parameter

Тур	MP 8x 2xxx20
Bezeichnung in der Ventiltypnummer	PCA
Versorgungsdruck	max. 1,6 bar
Funktion	direkt oder indirekt
Stellsignal	ON - OFF
	Pneumatiksignal 20 - 100 kPa (mit Positionierer PY-1010)
Nennkraft	960 - 1760 N (je nach Typ)
Hub	13 mm
Maximale Mediumtemperatur	bestimmt durch die verwendete Armatur
Zulässige Umgebungstemperatur	-4 bis 80°C
Zulässige Umgebungsfeuchte	5 - 100 %
Gewicht	5 kg (6kg mit Positionierer)

Zubehör

Pneumatikpositionierer (Korrektor) (Typ PY-1010)	zur Einstellung des gewünschten Hubs mit Hilfe eines
	Pneumatiksignals 20 bis 100kPa
Signalschalter	einstellbare Endlagenschalter
Positionsrückmelder	Rückführpotentiometer (0 - 2 kΩ)
Handsteuerung	für direkte (NO) oder indirekte (NC) Antriebsfunktion

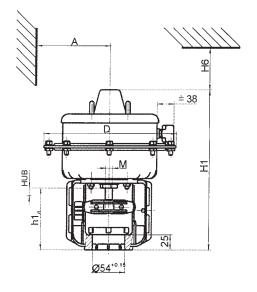
Arbeitsbedingungen

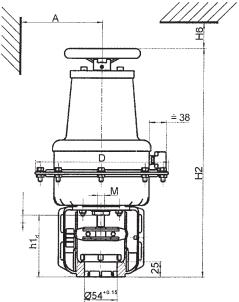
Pneumatikantriebe können in freiem Gelände angebracht werden und sind auch in Umgebung mit Explosionsgefahr SNV1 bis SNV3 einsetzbar. Sofern am Servomotor elektrisches Zubehör angebracht ist, ist die Anwendung der Antriebe in explosionsgefährdeter Umgebung durch dieses Zubehör eingeschränkt.

Direkte und indirekte Antriebsfunktion

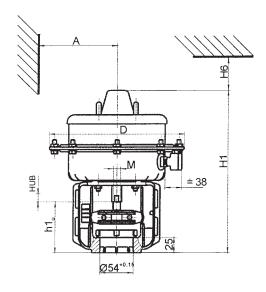
Bei direkter Funktion verschiebt sich bei Ausfall des Steuerluftdrucks die Zugstange in das Antriebsmodul hinein (das Ventil öffnet).

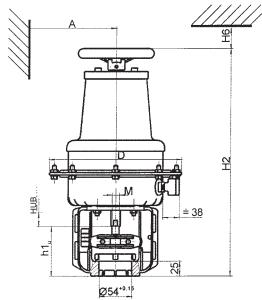
Bei indirekter Funktion des Pneumatikantriebs verschiebt sich die Zugstange bei Ausfall des Steuerluftdrucks aus dem Antrieb hinaus (Ventil schließt).




Antriebsspezifikation Reihe MP-8000

		ИР8	X 2	2 X	X	Χ	20
Funktion, Größe	D.A., Membran 160 cm² (direkte Funktion)		2			П	
	R.A., Membran 160 cm² (indirekte Funktion)	;	3				
Federbereich	20 50 kPa			С			
	60 90 kPa			E			
Ergänzungen	ohne				5		
Positionierer und Handrad	Positionierer D.A., PY-1010				6		
	Positionierer D.A., PY-1010 mit Handrad				7		
	Handrad		Τ		8		
Ergänzungen	ohne		Τ			0	
Rückführung und Schalter	Rückführpotentiometer 2 kΩ					1	
	Rückführpotentiometer 2 kΩ und 2 Hilfsschalter					2	
	2 Hilfsschalter					3	


Antriebe der Reihe MP-8000 - Abmessungen


Antrieb D.A. ohne Handrad und mit Handrad

Antrieb R.A. ohne Handrad und mit Handrad

D	M	H1	H2	H6 (min.)	H12 _(min.)	h1₄	h1.	$A_{(min.)}$	Hub
219	7/16-20 UNF-2B	266	372	416	522	102	83,5	160	13

Pneumatikantriebe PA-2000 Johnson Controls

Technische Parameter

Тур	PA-2xxx-3xxx
Bezeichnung in der Ventiltypnummer	PCB
Versorgungsdruck	max. 1,6 bar
Funktion	direkt oder indirekt
Stellsignal	ON - OFF
	Pneumatiksignal 20 - 100 kPa (mit Positionierer PY-1010)
Nennkraft	1800 - 6600 N (je nach Typ)
Hub	25, 42 mm
Maximale Mediumtemperatur	bestimmt durch die verwendete Armatur
Zulässige Umgebungstemperatur	-30 bis 80°C
Zulässige Umgebungsfeuchte	5 - 100 %
Gewicht	Antrieb mit Membran 300 cm² - 6 kg (7kg mit Positionierer)
	Antrieb mit Membran 600 cm² - 17 kg (18kg mit Positionierer)

Zubehör

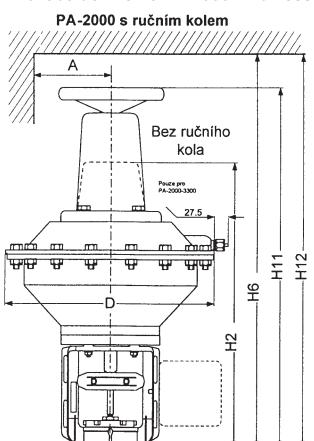
Pneumatikpositionierer (Korrektor) (Typ PY-1010)	zur Einstellung des geforderten Hubs mit Hilfe eines
	Pneumatiksignals 20 bis 100kPa
Signalschalter	einstellbare Endlagenschalter
Positionsrückmelder	Rückführpotentiometer (0 - 2000 Ω)
Handsteuerung	für direkte (NO) oder indirekte Antriebsfunktion (NC)

Arbeitsbedingungen

Pneumatikantriebe können in freiem Gelände und in Umgebung mit Explosionsgefahr eingesetzt werden.

Direkte und indirekte Antriebsfunktion

Bei direkter Antriebsfunktion verschiebt sich die Zugstange beim Ausfall des Steuerluftdrucks in das Antriebsmodul hinein (das Ventil öffnet sich).


Bei indirekter Funktion des Pneumatikantriebs verschiebt sich die Zugstange bei Ausfall des Steuerluftdrucks aus dem Antrieb heraus (das Ventil schließt).

Antriebsspezifikation Reihe PA-2000

		PA-	-2 X X	(X	- 3	Χ	X >
Handrad	Ohne		0				
	mit Handrad		1				
Positionierer durch Hersteller montiert	ohne		C)			
	DA Ttyp (PY-1010)		3	3			
Ergänzungen	Keine			0			
Rúckfúhrung und Schalter	2 Hilfsschalter			1			
	Rückführpotentiometer 2 k Ω			2			
	Rückführpotentiometer 2 kΩ und 2 Hilfsschalter			3			
Größe	300 cm ² , Standard für DN 50 und 65					3	
	600 cm ² , Standard für DN 80 bis 150					6	
	600 cm ² , großer Antrieb für DN 50 und 65					7	
Funktion, Größe	D.Adirekte Funktion					П	1
	R.Aindirekte Funktion (revers)					П	2
Federbereich	20 50 kPa						2
	70 100 kPa						7

Antriebe der Reihe PA-2000 - Abmessungen

PA-2000-3300

DN	Α	D	H2	H6	H11	H12
50 a 65	200	290	378	528	492	642

PA-2000-3600 und PA-2000-3700

DN	Α	D	H2	H6	H11	H12
50 - 150	250	384	508	708	666	866

Maximal zulässiger Arbeitsüberdruck [MPa]

Material	PN	Temperatur [°C]										
		120	150	200	250	300	350	400	450	500	525	550
Bronze	16	1,60	1,14									
42 3135												
Grauguß EN-JL 1040	16	1,60	1,44									
(EN-GJL-250)												
Formguß EN-JS 1025	16	1,50	1,40	1,40	1,30	1,10						
(EN-GJS-400-18-LT)	40	4,00	3,88	3,60	3,48	3,20					-	
Kohlenstoffstahl 1.0619	16	1,60	1,50	1,40	1,30	1,10	1,00	0,80				
(GP240GH)	40	4,00	4,00	3,90	3,60	3,20	2,70	1,90				
Chrommolybdänstahl												
1.7357 (G17CrMo5-5)	40	4,00	4,00	4,00	4,00	4,00	4,00	3,90	3,10	1,80		
Austenit. rostfr. Stahl 1.4581	16	1,60	1,50	1,40	1,30	1,30	1,20	1,20				
(GX5CrNiMoNb19-11-2)	40	4,00	3,80	3,50	3,40	3,30	3,10	3,00				

Anmerkungen:

LDM, spol. s r.o. Litomyšlská 1378 560 02 Česká Třebová Tschechische Republik

tel.: +420 465 502 511 fax: +420 465 533 101 E-mail: sale@ldm.cz http://www.ldm.cz LDM, spol. s r.o. Büro Prague Tiskařská 10 108 28 Praha 10 - Malešice Tschechische Republik

tel.: +420 234 054 190 fax: +420 234 054 189

LDM, spol. s r.o. Büro Ústí nad Labem Mezní 4 400 11 Ústí nad Labem Tschechische Republik

tel.: +420 475 650 260 fax: +420 475 650 263

LDM servis, spol. s r.o. Litomyšlská 1378 560 02 Česká Třebová Tschechische Republik

tel.: +420 465 502 411-3 fax: +420 465 531 010 E-mail: servis@ldm.cz

LDM, Polska Sp. z o.o. Modelarska 12 40 142 Katowice Polen

tel.: +48 32 730 56 33 fax: +48 32 730 52 33 mobile: +48 601 354999

E-mail:

Idmpolska@Idm.cz

LDM Bratislava s.r.o. Mierová 151 821 05 Bratislava Slowakai

tel.: +421 2 43415027-8 fax: +421 2 43415029 E-mail: ldm@ldm.sk http://www.ldm.sk LDM Armaturen GmbH Wupperweg 21 D-51789 Lindlar Deutschland

tel.: +49 2266 440333 fax: +49 2266 440372 mobile: +49 177 2960469

E-mail: Idmarmaturen@Idmvalves.com

http://www.ldmvalves.com

LDM - Bulgaria - OOD z. k. Mladost 1 bl. 42, floor 12, app. 57 1784 Sofia Bulgarien

tel.: +359 2 9746311 fax: +359 2 9746311 GSM: +359 88 925766 E-mail: ldm.bg@mbox.cit.bg

Ihr Partner